
1
Challenge the future

Data model ideas for SANGOMA
Web meeting May 8, 2012

Martin Verlaan, Nils van Velzen & Umer Altaf

2
Challenge the future

EOF example

Motivation:
• EOF or POD is mentioned in various forms as a tool to

be shared in Sangoma.
• Basics are simple enough for a discussion
• Many complications in extensions

Core computations as Matlab code:
function Z=eof(X,p);
E=X'*X;
[U,D,V]=svd(E); %E=U*D*V'
T=V/sqrt(D);
Z=X*T(:,1:p);

3
Challenge the future

Input: x_1,..,x_N
Output: z_1,..,z_M with M<=N

Pseudo code:
• E(i,j)=dot(x_i, x_j)
• Symmetric eigenvalue decomposition of E
• z_i= linear combination of x_1,...,x_N

• Computational core is too simple to share? Just 2x
blas + one lapack routine.

→ Useful tools need to contain significant building
blocks to be useful.

Example of EOF module

4
Challenge the future

Input and output for EOF can be available as:
• NetCDF files

• CF needs multiple variables (salinity,temperature)
• CF needs meta-data, eg. Grid, time, units,...
• Possibly too large to fit in memory

• In memory (fortran-like)
• Single array
• Scattered over multiple arrays

• Different programming language
• Matlab, Java, …

• Distributed over processes (parallel computing)

Extension 1: Data storage

5
Challenge the future

Program eof_netcdf
 Read from netcdf
 Per variable access for CF → store in X
 Keep meta-data separately for writing of eof's
 :
 Call eof(X,Z) subroutine
 :
 Write to netcdf
 Write per variable ← extract from Z
 Add meta-data

Issues:
• Needs more work if it does not fit in memory
• Netcdf wrapper potentially more work than eof core

NetCDF storage

6
Challenge the future

• Single array vs multiple blocks
• No pointer arrays like float **X or array<float[]> in

fortran → needs Type in fortran
• real x_1(:),...x_n(:) to X(:,:) transform always requires a

copy of the data
• real X(:,:) to x_1(:),...x_n(:) transform can be handled

with pointers or by copying
• Portability

• Basic types like, real(:), map fine to c in fortran2003
• Complex types and pointers are more difficult to map

In memory storage

7
Challenge the future

• No direct access to data → only through subroutines
• get_values and set_values

• Does not require copying data if performance is
important

• Allows different implementations with same interface;
eg netcdf vs in-memory

Abstract data types

8
Challenge the future

• Equal summed weights per variable
• Energy norm:

• U → 0.5*dx*dy*dz*rho*u^2
• H → 0.5*dx*dy*rho*h^2

• Non-linear transforms
• Log for positive variables
• Anamorphosis

→ Requires meta-data

Extension 2: transformations

9
Challenge the future

• Options:
• Explicit MPI calls
• Additional version without MPI or empty stub-routines
• Hide MPI functionality from algorithm

• 2-directions: members vs. domains

Extension 3: Parallel Computing

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

