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Outline

Research directions at AWI:
» Applications
» Algorithms

» Software development

Outline

» Parallel Data Assimilation Framework - PDAF
» Projects applying Data Assimilation

» Algorithmic developments
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Parallel Data Assimilation Framework
PDAF

== Bs—
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PDAF: A tool for data assimilation

PDAF - Parallel Data Assimilation Framework

= a software to provide assimilation methods

for testing algorithms and real applications

useable with virtually any numerical model
= also:
« apply identical methods to different models

* test influence of different observations

makes good use of supercomputers
(Fortran and MPI; tested on up to 4800 processors)

More information and source code available at
http://pdaf.awi.de
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Models and Filter Algorithms

» Sequential assimilation algorithms require limited information
= no physics needed!
= relation of model fields to state vector

= observations (time, type, location, error)

Because of this:

» Filter algorithms can be developed and implemented
independently from model

» Model can be developed independently from the filter

» Parallelization of ensemble forecast can be implemented
independently from model
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Logical separation of assimilation system

Filter
Initialization
analysis
state re-initialization state
ti i
Ime Core of PDAF observations
Model Observations
initialization | ________Mmeshdaa | obs. vector
time integration obs. operator
post processing obs. error
For online implementation:
«<—— Explicit interface
<«----» |ndirect exchange (Fortran: module/common)

o

L. Nerger et al. (2005) in Use of High Performance Computing in Meteorology - Proceedings of AWI @
the 11th ECMWF Workshop / Eds. W. Zwieflhofer, G. Mozdzynski. World Scientic, pp. 63-83




Model

Initialize Model
generate mesh
Initialize fields

v
—><Do i=1, nsteps>—>

Time stepper
consider BC
Consider forcing

i

{

Post-processing

External Do-loop can be
avoided — lower flexibility!
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init_parallel_pdaf

{

Initialize Model
generate mesh
Initialize fields

{

PDAF _init

{

—(__ Do D

{

PDAF _get_state

doexit>07? false

—( Do =1,

true

nsteps>—>

Time stepper
consider BC
Consider forcing

}

{

A

PDAF put_state

Filter-Analysis

{

Post-processing

Extension for
data assimilation
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PDAF’s Interface

Don’t adapt the model to the assimilation system

=?» Attach DA functionality to model
» Model time stepper not required to be subroutine
» Model-sided configuration of assimilation system
» Low abstraction level for optimal performance

» Interface independent of filter
(except for names of user-supplied subroutines)

» User-supplied routines for elementary operations in
model context (e.g. using modules of model code):

= field transformations between model and filter

= observation-related operations

.‘A_,_,_ .
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2-level Parallelism

v

v

v

Forecast Analysis Forecast
Model _ Model
| Task 1 | Filter u Ta‘sk1 |
Model Model
— Task 2 - 5 =—Tas‘.k2—
Model Model
— Task 3 - —Tas‘k3—

1. Multiple concurrent model tasks
2.Each model task can be parallelized

» Analysis step is also parallelized
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Application case: FEOM - Coarse North Atlantic

Finite Element Ocean Model

finite-element discretization

surface nodes: 16,000
3D nodes: 220,000
z-levels: 23
eddy-permitting

Assimilate synthetic sea level
data (10 days, complete surface)
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Parallel Performance — DA system

Speedup with number of processes per model task

Use between 64 and 4096 processors of  [P———— e
SGI Altix ICE cluster (Intel processors) [ et e 513 proc.
94-99% of computing time in model %6_

integrations }gj broe:
Speedup: Increase number of processes |

for each model task, fixed ensemble size

4
/64/51 2 proc.

» factor 6 for 8x processes/model task 7 Sr—
processes per model task
» one reason: time stepping solver Time increase with increasing ensemble size
' - 1.08 : : : . : :
needS more |terat|0nS ——8 processes/model task 4096 proc
— 64 processes/model task .

—y

o

(o))
T

Scalability: Increase ensemble size, fixed
number of processes per model task

» increase by ~7% from 512 to 4096
processes (8x ensemble size)

1.041

Time increase factor
2

proc.

» one reason: more communication 1 >
0 10 20 30 40 50 60
On the network 64/512 proc. ensemble size



Parallel Performance — Filter only

Speedup for LSEIK with number of processes

> Use between 8 and 320 processors; T 1T
larger mesh (55.000 surface nodes) :Z T, forecast

» Assimilate each time step with LSEIK o 251

» Up to 50% of computing time in filter fﬁifz
analysis ol

Filter in total:

0 5.0 160 150 260 250 360
» Very good speedup up to 224 processes. number of processes

- Speed f LSEIK part
> 80% efficiency at 320 processes. PP it dhsia bl
----- ideal
-+ = fil |
> Smaller speedup for forecasts 40| — nomlocal prep.

——search local obs.

Filter pa rts: soll — local analysis

[| —— ensemble trans.

» Most parts show ideal speedup

» Constant time for non-local preparation |
(Negligible cost for 8 processors)

0 = n —_— —

= read observations, initialize innovation O ber ofrocasses ) 0%




Existing Online Implementations

» FEOM (Finite-Element Ocean Model)

= PDAF’s “home” model; all features

» MIPOM (met.no, by I. Burud)

= First implementation not done by myself
» NOBM (NASA Ocean-Biogeochemical Model)
= For ocean-color assimilation

» BSHcmod (Project DeMarine Environment)

= Toward operational use in North Sea and Baltic Sea
» OMCT (GFZ Potsdam, J. Saynisch)

= Assimilating ocean angular momentum data

» ADCIRC (at KAUST, I. Hoteit, with U. Altaf)

= 3 days for basic implementation

Lars Nerger — Data Assimilation at AWI



Assimilation for operational forecasting
In the North and Baltic Seas

(Project DeMarine Environment)

Cooperation of AWI and BSH
(German Maritime and Hygrographic Agency)

S. Loza, L. Nerger, J. Schroter (AWI)

F. Janssen, S. Massmann (BSH)

DeMarine;

Environment @ .
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Operational BSH Model (BSHcmod), Version 4

65

55

345 350" 3557 0’ 5 10° 15 207 25 30°

Grid nesting:

-10 km grid
- 5km grid
-900 m grid
Data
assimilation:
5 km grid
0 10 20 30 40 50 60 70 80 a0 100 110 120 130 180 200 500 1000 2500 4000
BSSC 2007, F. Janssen, S. Dick, E. Kleine .
DeMarine;
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Assimilated Data

AL AL
7@' 7@'
7. P,
SST 02.10.2007 10:01/11:17/11:42/12:58 UTC SST 11.10.2007 09:53/11:24 UTC
\ : \
Lit Al SH

» Surface temperature (NOAA satellite data)
» 12-hour time window
» Strong variation of data coverage (clouds)

» Use observation error: 0.8 °C (empirical)

DeMarine ;'.
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Deviation from NOAA Satellite Data

« Mean RMS over 1 year (10/2007 — 9/2008)
« Significant reduction of erros (spatial mean ~0.2 — 0.3°C)

No assimilation Assimilation with LSEIK Filter

RMS Fehlers der SST Vorhersage 01.10.2007 - 30.09.2008 (ohne Datenassimi  RMS Fehlers der SST Vorhersage 01.10.2007 - 30.09.2008 (mit LSEIK Filter)
! : ! —— ! g g _ 2

N

°c

mean=1.0577

T T T T
0° 8°E 16°E 24°E 0 8°E 16°E 24°E

DeMarine ;'.
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Validation with independent data

SST at Marnet station Darss Sill

25— 1 @ ! ! ! I ! &
. - Error estimates: : : : : :
MARNET station 20+ Bi@sh 20,55 wQ: AT v v v e b g -
; RMSE 1 27 0. 81 ‘ ; . ‘ , ;
data PP S S S ST S S o W
o N f : f : : f N Y
P ool e N
* Reduction of 5 ‘ f | E & ' ‘
. Marnet data
¢ B|aS 5_ - - o BSHcmod without DA
: . ; ; . . LSEIK foreoast
| | | | |
* RM S error 0 15/10/07 151 1/071 51 2/071 5/01/08 15/02/081 5/03/08 15/04/0815/05/08 15/06/08‘1 5/07/081 5/08/08 15/09/08
date
1 year mean over SST at Arkona Becken
25— 1 T T T T ! T
6 stations: - Errorestimates: | | | | : |
20+ Bias:: <029 - 0.0 -+ e S S .
. - RMSE: 0.88 0.58: : : : : : e
RMSe bias 5L S S e Al T T
) > n
free 0.87 0.3 T ok N
’ Marnetdata
data 059 01 o et
asml 055 008 i i ; i ; : i i LSEIleorecast

0
15/10/07 15/11/0715/1 2/07‘1 5/01/08 ‘15/02/08‘1 5/03/08 15/04/0815/05/08 ‘15/06/081 5/07/0815/08/08 15/09/08

date
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Improvement of long forecasts

RMS error over time

09 | ——=——-

Modellabweitung ohne DA
LSEIK Vorhersage
LSEIK Analyse

Lange LSEIK Vorhersage
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I | I | |
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22110707

black: free model run

Blue/red: 12h
assimilation/analysis
cycles

green: 5 day forecast

-» Very stable 5-day
forecasts

DeMarine;

Environment @



Further work

» Pre-operational use during January — March 2011
» Assimilation of MARNET data
» Assimilation of CTD data for deep ocean

» Extension by biogeochemistry model (planned)

DeMarine;
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Assimilation of dynamic ocean topography from
radar altimetry and GRACE/GOCE geoid
(Project GEOTOP 3)

T. Janjic', J. Schroter!, R. Savcenko?, W.Bosch?, A.
Albertellas, R. Rummel3, O.Klatt'

(1) Alfred Wegener Intitute
(2) German Geodetic Research Institute, Munich, Germany,
(3) Institute for Astronomical und Physical Geodesy,
Munich, Germany

,‘__, -
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Geodetic DOT

DOT=H= h-N /%

+

h = sea surface height
(from altimetric
measurements)

N = geoid height

(from recent geoid W
models)

« The filter length is driven by the spectral resolution of the gravity

« Spectral consistency is achieved by applying a Gauss-type filter Field
(Jekeli/Wahr) on sea surface and geoid.

ALTIMETRY




4 l 1 14 -
-1.2m -0.8m -04m 00m 04m 0.8 m 1.2m

DOT from TOPEX, Jason-1, GFO, ENVISAT and GRACE/GOCE
obtained from the data within a ten day interval.



Assimilation procedure

DOTs filtered up to half width of
241 km (60), 121 km (120), and 97
km (150) are used for assimilation.

Data are assimilated every 10 days
into finite-element model FEOM.

LSEIK with observation localization
#weighting by Gauss-like correlation
unction)

Observations within radius of

900 km, 450 km, 360 km are used
depending on the filtering of DOT.

The observational error standard
deviation is 5 cm and 7cm for 150.

Observation weighting and
filter width of observations
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Comparisons to ARGO

Locations of floats

Temperature [°C] o-@ Depth [m]=800

Ocean Data View

Temperature and Velocity at 800 m

depth as result from:

 Argo floats
and
 Model without DOT data




Comparisons to ARGO




Algorithms

some developments
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Zoo of ensemble-based/error-subspace Kalman filters

= Alittle “zoo” (not complete):

Trying to order it ...
(learn from studying relations)

RRSQRT

ROEK

| EnKF(94/98) |

| SEEK |

Studied in Nerger

et al. (2005) SEIK

New study
(submitted to MWR)

(Properties and differences are hardly understood)
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EnKF(2003)
EnKF(2004)

EAKF

EnSRF

ETKF

ESTKF

MLEF

SPKF

ESSE

New filter
formulation

AW



Square-root filters and SEIK
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Ensemble Square-root Filters

Categorization by Tippett et al. 2003

EnKF94/98
EnKFO03
EnKFO04
d
- = ¢
Y
® V EAKF ESTKF
SEIK
LETKF
(\ LEKF - ﬁ
back \:\q\ \)3
ground® aps.com L

ar

|

—
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Analysis step and ensemble transformation

Analysis step of square-root filters:
1. correct state estimate
2. transform ensemble (forecast — analysis)

(both can be combined into a single operation)

Key element: Transformation matrix

» Computed in a space spanned by the ensemble members

» Not unique!

.W. y ®
M
Minimum transformation Random transformation

o
with constraints (\ @
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Ensemble transformations of ETKF and SEIK

ETKF SEIK
» Based on square-root of > Based on factorization VUVT of
covariance matrix covariance matrix

» Compute transformation matrix » Transformation matrix in space

in space of dimension N of dimension N-1 uses square-
(ensemble size) root of matrix U

» Minimum transformation is » Minimum transformation can be
standard applied

=» Ensembles after deterministic transformation nearly identical

=» Then ETKF and SEIK are almost twins

L. Nerger et al., Unification of ensemble square-root filters, submitted to MWR, 2011

ANIT



Lorenz96 experiment: ETKF & SEIK

ETKF

o
©
©

o
©
o)

forgetting factor
(=}
©
N

o
©
N

o
©

10 20 30
ensemble size

40

forgetting factor

0.9

SEIK

10

20 30
ensemble size

= “forgetting factor” is inverse of covariance inflation

(Introduced with SEIK)

40

= Averages over each 10 experiments (different initial ensembles)

» Small differences — but too large for numerical precision
(relative initial difference in transformation matrices O(10-4)
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Analysis step and ensemble transformation

=» But: ensemble transformation in SEIK depends on order of
ensembles

=» Something wrong with SEIK? =» Look into equations - sorry!

Forecast Covariance: P/ = L, GL”

with L, := XgT (Xi: ensemble matrix)
1 ~1
G=——(T'T
T
| P 1
T = " - N (]—er)
Oer

=» Matrix T subtracts ensemble mean and removes last column

=?» Last column depends on ensemble ordering!

e, i
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Ensemble order matters in SEIK

Distinct matrices L =» distinct matrices U:
U, "= pG™' + (HyLy)" R, 'H, Ly,

P¢ — L, U,LL (this is always correct)

=?» Finally: slightly different eigenvalues and eigenvectors

Ensemble-transformation:
Square-root C.'(C.H"=U." (svD)

New ensemble:  X¢ = X% 4+ /N —1 L,CIQ?

() is projection from N-1 to N
(Random matrix from Householder reflections)



Solution:

Redefine T:

» Subtract ensemble mean

» Distribute last column over first N-1 columns
» Use correct scaling to preserve mean

/

1—%%;“ for i = j,i < N
Ti; = s —%%H for i # j,i < N
\ —\/—% fort =N
-» A deterministic form of £2 (Householder reflection)

With this:
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New filter - ESTKF

Use redefined T (= deterministic €2)

Forecast Covariance: P/ = L,GL;

with L := X/Q
Matrix U simplifies to:
U, ' =p(N — DI+ (HLy) R, 'H,Ly
(inverse of error covariance matrix in error space)

Ensemble transformation

¢ =X; + VN - 1 X]|QCLQ|

=» Consistent projections between state space and error space

=» Transformation identical to ETKF (same eigenvalues/vectors)
=» Cheaper than ETKF
=» Not more expensive than SEIK
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Regulated Localization
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Localization Types

Covariance localization

» Applied to forecast covariance
matrix

» Element-wise product with
matrix of compact support

» Only possible if forecast
covariance matrix is computed
(not in ETKF or SEIK)

Domain localization

Perform analysis in loop over
domains in model grid

Use only observations within
specified influence distance

Can be combined with
weighting of observation errors
(,observation localization®)

Possible in all filter formulations

E.g.: Houtekamer & Mitchell (1998,
2001), Whitaker & Hamill (2002)

E.g.: Evensen (2003), Ott et al. (2004),
Nerger et al. (2006), Hunt et al. (2007)

ANIT
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Covariance vs. Observation Localization

Recently a hot topic ...

o
Sakov & Bertino (2011)

d

19
Janji¢ et al. (2011)
Nerger et al. (2011)

Greybush et al. (2011) ,\L

Brankart et al. (2011) IZ

\ ‘
backgroum.f}\aps.com ol 2 u}i_//f‘ﬂ - - g

==
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Covariance vs. Observation Localization

Some pUbIIShed findings: .—prescrib.ed weight
_ 0.8} B - - -effective weight
= Both methods are “similar” 5
= 0.6f
= Slightly smaller width required for 2
[] " " O "
observation localization 3
0.2f
But note for observation localization: 0
= Effective localization width depends 1
on errors of state and observations _og}
S
» Small observation error 2 0.6f
. . . ()
=¥ wide localization Z 0.4l
()
» Possibly problematic: ® 0.2}
* in |n|t|§I t.rar.13|ent phase 0, 0 40 = o
of assimilation distance

P: state error variance

i large state errors are R: observation error variance

estimated locally
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Regulated Localization

=» New localization function

formulated to keep effective width constant
depending on state and observation errors
depending on fixed localization function
easy to compute to each observation

_\INfixed
- -w'%, R=10 |
---w'8, R=1.0
— w9, R=0.1F

80 100

distance
P: state error variance
R: observation error variance

L. Nerger et al. A regulated localization scheme for ensemble-based Kalman
filters. QJ Roy. Met. Soc., early online access, 2011

i
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Lorenz96 Experiment: Regulated Localization

Fixed localization, N=10, R=0.5 Regulated localization, N=10, R=0.5

0.5 0.5

1 0.4 1] 0.4

0.35 0.35

0.3 0.3

0.98 06225 0.98 0.25
S 0.15 ISi 0.15
S 0.6 06114215 S .96 0.145
, I 0. 0.14
2 0.135 o 0.135

= 0.13 = 0.1
g,094 0.125 © 0.94 o.1235
S 0.12 5 0.12
0.115 - 0.115

0.92 0.11 0.92 0.11
0.105 0.105

0.1 0.1
0.9 0.095 0.9 0.095
0.09 ' 0.09

2 6 10 14 18 22 26 30 34 2 6 10 14 18 22 26 30 34 '

support radius support radius

» Reduced minimum rms errors
» Increased stability region

» Particularly pronounced for accurate observations
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Thank you!




