Local ensemble assimilation scheme with global constraints and conservation

Alexander Barth, Luc Vandenbulcke, Yajing Yan, Martin Canter, Aida Alvera-Azcárate, Jean-Marie Beckers

GHER/AGO/MARE, University of Liege (ULg), Belgium Sangoma, November 2015

Covariance localization

Need for covariance localization

▶ In ensemble assimilation schemes, the model error covariance P is represented by an ensemble of model states $\mathbf{x}^{(k)}, k = 1, ..., N$ ($\langle \dot{\rangle}$ is the ensemble average).

$$\mathbf{P} = \langle (\mathbf{x} - \langle \mathbf{x} \rangle) (\mathbf{x} - \langle \mathbf{x} \rangle)^T \rangle = \mathbf{X} \mathbf{X}^T$$

▶ As N increases convergence is relatively slow $(N^{-1/2}) \rightarrow$ sampling error.

- This sampling error leads to unrealistic long-range correlations.
- Covariance localization suppresses these long-range correlations based on the horizontal distance based on a specified length-scale.

Global constraints and conservation

- Localization splits the assimilation problem into a series of local optimizations
- ► Global assimilation schemes have no problem in respecting linear conservation
- Non-linear constraints can sometimes be transformed into linear constraints by a careful transformation model variable. Example
 - Layered models: salinity S_i and layer thickness h_i , then :

$$\sum_{i} \int_{\Omega} S_{i} h_{i} \, \mathrm{d}\mathbf{x} = \mathsf{const}$$

- This conservation property is non-linear if a state vector including S_i and h_i
- ... but becomes linear if the state vector includes $S_i h_i$ and S_i (or h_i).

Localization

- One can distinguish different localization approaches:
 - covariance localization: every single observation point is assimilated sequentially and the correction are filtered by a localization function. (less suited for parallel processing and the domain localization).
 - **domain localization**: the state vector is decomposed into sub-domains (e.g. single grid points or vertical columns) where the assimilation is performed independently. Such algorithm are easily applied to parallel computers.
- Conservation of the global property is lost if the assimilation is performed locally
- The conservation requires a coupling of a model grid points which is filtered-out by the localization.
- Similar difficulty: non-local observation operator

Method

We propose a assimilation scheme which is local and can satisfy global conservation properties and non-local observation operators.

In essence:

- Based on covariance localization
- Localize ensemble covariance matrix (by using an element-wise matrix product)
- Modify this localized covariance matrix to so that the **uncertainty of the** total amount of the conserved quantity is zero
- One recovers the original Kalman filter analysis if the covariance does not have spurious long-range correlation.
- Parallel algorithm

Solver

▶ Matrices are not formed explicitly, but as an "operator"

$$\mathbf{P}_{c} = (\mathbf{I} - \mathbf{h}\mathbf{h}^{T})(\boldsymbol{\rho} \circ \mathbf{P})(\mathbf{I} - \mathbf{h}\mathbf{h}^{T})$$
(1)

where $\mathbf{h}^T(\mathbf{x}^a-\mathbf{x}^f)=0$

► Conjugate gradient algorithm as solver for these systems:

$$\left(\mathbf{H}\mathbf{P}_{c}\mathbf{H}^{T}+\mathbf{R}\right)^{-1}\mathbf{y}=\mathbf{b}$$
(2)

where ${\bf y}$ and ${\bf b}$ two vectors in the observation space.

- Preconditioner can be:
 - Solution without localization $\mathbf{P}_c \sim \mathbf{P}$
 - Solution without ensemble (3D-Var) $\mathbf{P}_c \sim oldsymbol{
 ho}$

Variants

 Ensemble mean: standard Kalman Filter update (but with modified error covariance)

$$\mathbf{x}^{a} = \mathbf{x}^{f} + \mathbf{K}(\mathbf{y}^{o} - \mathbf{H}\mathbf{x}^{f})$$
(3)

- ► Full ensemble:
 - Either use perturbed observations $\mathbf{y}^{o(k)}$ (variant "pert")

$$\mathbf{x}^{a(k)} = \mathbf{x}^{f(k)} + \mathbf{K}(\mathbf{y}^{o(k)} - \mathbf{H}\mathbf{x}^{f(k)})$$
(4)

- Project analysis error covariance onto a subspace (variant \mathbf{P}_c)
- Project approximated analysis error covariance onto a subspace (variant SS^T). For this variant: no rotation if $R \to \infty$

Test case

Kuramoto-Sivashinsky equation

► Equations:

$$\partial_t v = -\partial_x^2 v - \partial_x^4 v - v \partial_x v \tag{5}$$

▶ Periodic domain: $L = 32\pi$ with 128 grid points

- ▶ Time-step: $\Delta t = 1/4$
- ETDRK4 (Exponential Time Differencing fourth-order Runge-Kutta)
- ► Conservation:

$$\frac{d}{dt} \int_0^L v \, dx = 0 \tag{6}$$

Figure 1: Solution of the KS equation (without assimilation)

Assimilation test cases:

	non-conservative	conservative
covariance localization	CL	CL-adj
perturbed observation	EnKF-pert	CEnKF-pert
Localized EnKF without per- turbed obs. variant " \mathbf{P}_c "	$LEnKF-\mathbf{P}_c$	$CLEnKF-\mathbf{P}_{c}$
Localized EnKF without per- turbed obs. variant " \mathbf{SS}^{T} "	$LEnKF ext{-}\mathbf{SS}^T$	$CLEnKF extsf{-}\mathbf{SS}^T$

Assimilation setup

- Classical twin experiment
- Every 8th grid point is observed (with an error variance of 0.1) at every 10 model time steps
- ▶ The model with assimilation for 1000 time steps
- The experiment is repeated 1000 times and RMS errors relative to the true solution are averaged.
- Using different localization length-scale and inflation factors

Results

- RMS error between the model run with assimilation and true solution for different schemes
- x-axis: localization length-scale
- y-axis: inflation factors
- white region where model is unstable

Optimal parameters

	L	inflation	mean RMS	std of mean RMS
CL	21	1.03	0.71375	0.00271
CL adj	21	1.03	0.68624	0.00268
LEnKF-pert	21	1.07	0.66267	0.00570
CLEnKF-pert	21	1.07	0.63493	0.00609
$LEnKF\;\mathbf{P}_{c}$	25	1.05	0.64253	0.00364
$CLEnKF\;\mathbf{P}_{c}$	25	1.05	0.59395	0.00386
$LEnKF\ \mathbf{SS}^T$	25	1.05	0.64078	0.00513
$CLEnKF\ \mathbf{SS}^T$	25	1.05	0.59953	0.00452

▶ Lowest RMS for different assimilation schemes and corresponding parameters

- Methods with conservation always better than without
- \blacktriangleright CLEnKF \mathbf{P}_c and CLEnKF \mathbf{SS}_c very similar, but CLEnKF \mathbf{P}_c slightly better

Minimal model for sea ice and salinity with conservation

- Assess these schemes for a multivariate model
- Minimal model for sea ice and salinity where the amount of "freshwater" (or salt) is conserved.
- Integral of a function f (of the model parameter) over a closed domain remains constant over time:

$$\frac{d}{dt}\int_{\Omega}fdx = 0\tag{7}$$

▶ The velocity (v) for salinity (S) is provided using the Kuramoto-Sivashinsky equation:

$$\partial_t v = -\partial_x^2 v - \partial_x^4 v - v \partial_x v - g \partial_x h \tag{8}$$

Governing equations

▶ The flow v is not "incompressible" as it varies with x. Thus we use also the variable h, representing the height of the mixed layer.

$$\partial_t(hS) + \partial_x(vhS) = \kappa \partial_x^2(hS) + \mu \mathcal{F}$$

$$\partial_t c + \partial_x((v_c + v)c) = \mathcal{F}$$

where v_c is the velocity of the sea ice (constant) and h is governed by:

$$\partial_t h + \partial_x (hv) = 0$$

For a periodic domain Ω, salinity fluxes and ice fluxes cancel after integration over the whole domain and one obtains:

$$\frac{d}{dt} \int_{\Omega} (hS - \mu c) \, dx = 0$$

- > Free running simulation of the coupled multivariate model
- Solution is strongly dominated by the chaotic behavior of the velocity equation

Results

- Every second ice grid point is observed
- Average RMS error between the model run with assimilation and the true solution for different schemes and parameters
- High inflation values lead to unrealistic results for "CL" and "CL-adj"
- Results appear noisy but even after increasing the number of experiments, these small-scale variations remained and were stable

Summary

	L	inflation	mean RMS	std of mean RMS
CL	17	1.00	0.18362	0.00070
CL adj	7	1.02	0.18228	0.00047
LEnKF-pert	17	1.02	0.17444	0.00063
CLEnKF-pert	17	1.02	0.17254	0.00064
$LEnKF\;\mathbf{P}_{c}$	17	1.02	0.18689	0.00080
$CLEnKF\;\mathbf{P}_{c}$	17	1.02	0.18549	0.00080
$LEnKF\ \mathbf{SS}^T$	17	1.02	0.17244	0.00064
$CLEnKF\;\mathbf{SS}^T$	17	1.02	0.17064	0.00065

Table 1: Lowest RMS for different assimilation schemes and corresponding parameters

- ▶ Suprisingly P_c is not better than CL
- Error space rotation seem to degrade results
- ▶ Best results with method CLEnKF SS^{T}

Conclusions

- New assimilation scheme which is formulated globally (i.e. for the whole state vector)
 - where spurious long-range correlations can be filtered out
 - global conservation properties can be enforced
 - non-local observation operators can be used (e.g. assimilation of observation representing an average)
- Tests with Kuramoto-Sivashinsky show benefit of this approach compared to the traditional covariance localization scheme where observations are assimilated sequentially
- Even with an ad-hoc step enforcing conservation
- Beneficial also for multivariate models with conservation constraint relating different model variables
- \blacktriangleright The most consistent variant was CLEnKF \mathbf{SS}^T

Acknowledgments

This work was funded by the SANGOMA EU project (grant FP7-671 SPACE-2011-1-CT-283580-SANGOMA), by the project PREDANTAR (SD/CA/04A) from the federal Belgian Science policy and the National Fund for Scientific Research, Belgium (FNRS-F.R.S.).