Explicit simulation of uncertainties in ocean models, and application in SANGOMA benchmarks

Jean-Michel Brankart

Laboratoire de Glaciologie et de Géophysique de l'Environnement Equipe de Modélisation des Ecoulements Océaniques Multi-échelles

SANGOMA final meeting – November 5-6, 2015

Since important decisions must rely on simulations, it is essential that its validity be tested, and that its advocates be able to describe the level of authentic representation which they achieved.

Summer Computer Simulation Conference (1975), cited by Richard Hamming (1997)

Sources of uncertainties in ocean models

•Even if the dynamics of **U** can be assumed deterministic, the system **A** alone **cannot be assumed deterministic**.

 To obtain a deterministic model for A, one must assumed, either that B is known (→ atmospheric forcing), or that the effect of B can be parameterized (→ paramétrisation of unresolved scales or unresolved biologic diversity).

 \rightarrow B is the main source of uncertainty in the model.

The deterministic approach is not always sufficient to describe the dynamical behaviour of the system

Comparison between simulations and observations is easier with the probabilistic approach

A good knowledge of model accuracy is necessary to solve data assimilation problems

Probabiliste approach to ocean modeling

Stochastic ocean dynamics, explicitly simulating uncertainties

$$d\mathbf{x} = \mathcal{M}(\mathbf{x}, t)dt + \Sigma(\mathbf{x}, t)d\mathbf{W}_t$$

où $\mathbf{x} = [x_1, \dots, x_N]$

Fokker-Planck equation, for the probability distribution p(**x**,t), following ideas at the origin of the Ensemble Kalman filter (Evensen, 1994)

$$\begin{aligned} \frac{\partial p(\mathbf{x}, t)}{\partial t} &= -\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}} \left[\mathcal{M}_{i}(\mathbf{x}, t) p(\mathbf{x}, t) \right] \\ &+ \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \left[D_{ij}(\mathbf{x}, t) p(\mathbf{x}, t) \right] \\ \text{où} \quad \mathbf{D} &= \mathbf{\Sigma} \mathbf{\Sigma}^{T} \end{aligned}$$

Conditioning to observations, to reduce uncertainties

using an appropriate data assimilation method

Technological approach: ensemble simulations

Solution of the Fokker-Planck equation using a Monte Carlo method \rightarrow ensemble NEMO simulation \rightarrow échantillon de p(x,t)

1 MPI communicator for each member

 \rightarrow each member lives its own life, as in standard NEMO

1 MPI communicator for each subdomain

 \rightarrow "online" computations of any feature of p(**x**,t)

Uncertainty, as a key component of our systems

What are the uncertain components of our systems ?

How to describe uncertainties ?

How does it participate to the solution of inverse problems ?

2

Explicit simulation of uncertainties

2.1 Stochastic formulation of NEMO

Autoregressive processes (1)

At every model grid point (in 2D or 3D), generate a set of **independent Gaussian autoregressive processes:**

$$\xi(t_{k}) \,=\, a\,\xi(t_{k-1}) + b\,w + c$$

where **w** is a Gaussian white noise (\rightarrow order 1 process) or an autoregressive process of order n-1 (\rightarrow order n process)

Parameters *a*, *b*, *c* to specify:

mean, standard deviation and correlation timescale

Autoregressive processes (2)

Introduce a spatial correlation structure

by applying a spatial filter to the map of autoregressive processes:

$$ilde{oldsymbol{\xi}} = \mathcal{F}[oldsymbol{\xi}]$$
 (filtering operator)

 $\mathcal{L}[\tilde{\boldsymbol{\xi}}] = \boldsymbol{\xi}$ (elliptic equation)

which can easily be made flow dependent if needed

Modify the marginal probability distributions

by applying anamorphosis transformation to every individual Gaussian variable:

 $\tilde{\boldsymbol{\xi}} = \boldsymbol{\mathcal{T}}[\boldsymbol{\xi}]$ (nonlinear function)

for instance to transform the Gaussian variables into lognormal or gamma variables if positive noise is needed

→ This provides a generic technical way of implementing a wide range of stochastic parameterizations

Technolgical approach: a new module in NEMO

These processes are generated using a **new module in NEMO**, and **can be used in any component** of the model (Brankart et al., 2015): circulation model, ecosystem model, sea ice model

Algorithm 1 sto_par

```
for all (map i = 1, ..., m of autoregressive processes) do
   Save map from previous time step: \xi_{-} \leftarrow \xi_{i}
   if (process order is equal to 1) then
       Draw new map of random numbers w from \mathcal{N}(0,1):
       \xi_i \leftarrow w
       Apply spatial filtering operator \mathcal{F}_i to \xi_i: \xi_i \leftarrow \mathcal{F}_i[\xi_i]
       Apply precomputed factor f_i to keep SD equal to 1:
       \xi_i \leftarrow f_i \times \xi_i
   else
       Use previous process (one order lower) instead of white
      noise: \xi_i \leftarrow \xi_{i-1}
   end if
   Multiply by parameter b_i and add parameter c_i: \xi_i \leftarrow b_i \times
   \xi_i + c_i
   Update map of autoregressive processes: \xi_i \leftarrow a_i \times \xi_- + \xi_i
end for
```

→ Generic and flexible technological approach
 → Model independent implementation
 → Possible to simulate many kinds of uncertainty

Algorithm 2 sto_par_init
Initialize number of maps of autoregressive processes to 0:
$m \leftarrow 0$
for all (stochastic parameterization $k = 1,, p$) do
Set m_k , the number of maps of autoregressive processes re-
quired for this parameterization
Increase m by m_k times the process order o_k : $m \leftarrow m +$
$m_k \times o_k$
end for
for all (map $i = 1,, m$ of autoregressive processes) do
Set order of autoregressive processes
Set mean (μ_i) , standard deviation (σ_i) and correlation
timescale (τ_i) of autoregressive processes
Compute parameters a_i, b_i, c_i as a function of μ_i, σ_i, τ_i
Define filtering operator \mathcal{F}_i
Compute factor f_i as a function of \mathcal{F}_i
end for
Initialize seeds for random number generator
for all (map $i = 1,, m$ of autoregressive processes) do
Draw new map of random numbers w from $\mathcal{N}(0, 1)$: $\xi_i \leftarrow$
w
Apply spatial filtering operator \mathcal{F}_i to $\xi_i: \xi_i \leftarrow \mathcal{F}_i[\xi_i]$
Apply precomputed factor f_i to keep standard deviation
equal to 1: $\xi_i \leftarrow f_i \times \xi_i$
Initialize autoregressive processes to $\mu + \sigma \times w$: $\xi_i \leftarrow \mu + \phi$
$\sigma \xi_i$
end for
if (restart file) then
Read maps of autoregressive processes and seeds for the ran-
dom number generator form restart file (thus overriding the
initial seed)
end if

Example 1: Stochastic perturbation of parameterized tendencies

With this generic implementation, we can reproduce the SPPT scheme proposed by Buizza et al. (1999)

Separate model operator in NP (non-parameterized) et P (parameterized)

Assume that P is uncertain and simulate uncertainty by a multiplicative noise ξ

$$rac{d \mathbf{x}}{d t} = \mathcal{N} \mathcal{P}\left[\mathbf{x}, \mathbf{u}(t), \mathbf{p}
ight] + \mathcal{P}\left[\mathbf{x}, \mathbf{u}(t), \mathbf{p}
ight] oldsymbol{\xi}(t)$$

→ Use maps of autoregressive processes as ξ (with mean 1), and specify the correlation structure and marginal distribution of ξ.

Example 2: Stochastic parameterization of unresolved fluctuations

To simulate the effect of unresolved fluctuations in the nonlinear terms of the model equations

$$rac{d\mathbf{x}}{dt} = rac{1}{n}\sum_{i=1}^n \mathcal{M}\left[\mathbf{x} + \delta \mathbf{x}_i(t), \mathbf{u}(t), \mathbf{p}
ight] \quad ext{with} \quad \sum_{i=1}^n \delta \mathbf{x}_i(t) = 0$$

Generate fluctuations using **random walks** around every grid point

→ Use maps of autoregressive processes as components x, y, z of the random walks. Specify space and time correlation structure.

Example 3: Stochastic parameterization of unresolved diversity

To simulate the effect of the unresolved diversity of system behaviours (e.g. biological diversity,...)

This assumes that the system simultaneoulsy includes a variety of possible behaviours, which cannot be described by one single value of each parameter.

$$rac{d \mathbf{x}}{d t} = rac{1}{n} \sum_{i=1}^n \mathcal{M}\left[\mathbf{x}, \mathbf{u}(t), \mathbf{p} + \delta \mathbf{p}_i(t)
ight],$$

For instance, the ecosystem usually includes many different species of phytoplankton and zooplankton, each with its own behaviour, while the model can only resolve a few classes of species.

 \rightarrow Use maps of autoregressive processes ξ as multiplicative noise for the parameters, and specify their correlation structure and their marginal distribution.

Uncertainties in the computation of density

In the model, the large-scale density is computed form large-scale temperature and salinity, using the sea-water equation of state.

Because of the nonlinearity of the equation of state, unresolved scales produce an average effect on density.

Random walks to simulate unresolved temperature and salinity fluctuations

Computation of the random fluctuations ΔT_i et ΔS_i

as a scalar product of the local gradient with random walks $\boldsymbol{\xi}_i$

 $\Delta T_i = \boldsymbol{\xi}_i \cdot \nabla T$ and $\Delta S_i = \boldsymbol{\xi}_i \cdot \nabla S$

Random walks

Assumptions

AR1 random processes

uncorrelated on the horizontal

fully correlated along the vertical

5-day time correlation

horizontal std: 2-3 grid points vertical std: <1 grid point

Stochastic equation of state for the large scales

Stochastic parameterization (Brankart, 2015)

using a set of random T&S fluctuations ΔT_i et ΔS_i , i=1,...,p

to simulate unresolved T&S fluctuations

 $ho = rac{1}{p} \sum_{i=1}^p
ho \left[T + \Delta T_i, S + \Delta S_i, p_0(z)
ight] \quad ext{with} \quad \sum_{i=1}^p \delta T^{(i)} = 0 \ , \ \sum_{i=1}^p \delta S^{(i)} = 0$

No effect if the equation of state is linear. Proportional to the square of unresolved fluctuations.

Correction $\Delta \rho$ applied in the thermal wind equation, as in the semi-prognostic method of Greatbatch et al. (2004)

No direct modification of T&S; no enhanced diapycnal mixing. T&S only modified indirectly through a modification of the main currents

Mean sea surface elevation (standard)

Mean sea surface elevation (stochastic)

Mean sea surface elevation difference

Averaged SST & SSS difference

Modification of the mean flow **Modification** of the mean SST & SSS

Modification of air/sea interactions

Ensemble of mesoscale flows

Probability distribution for SSH

as simulate here by ensemble NATL025 (large case SANGOMA benchmark): 6 members among 96

 \rightarrow assimilation of altimetric data (in SANGOMA, Candille et al., 2014)

<u>Time</u> <u>evolution</u> <u>of the pdf</u>

from June 2005 to December 2006

4 **Stochastic ecosystem model**

Stochastic ecosystem model

Multiple sources of uncertainty in ecosystem model: <u>unresolved biological diversity</u>, <u>unresolved scales</u>, etc.

Unresolved diversity multiplicative noise in the SMS terms of the model

<u>Unresolved scales</u> stochastic processes explicitly simulating unresolved fluctuations of C_i

 \rightarrow Considerable effect on the mean behaviour of the system \rightarrow Increase of patchiness (\leftrightarrow ocean colour data)

Ensemble simulation of the ecosystem

Probability distribution of chlorophyll concentration

as simulated here by ensemble NATL025/PISCES (large case Sangoma becnhmark)

with stochastic parameterization of uncertainty: 4 members among 50

<u>Time evolution</u> <u>of the pdf</u> <u>for phtyoplankton</u>

from January to June 2005

→ assimilation of ocean colour observations (projects FP7-MyOcean2 and SANGOMA, Garnier et al., 2015)

Comparison to ocean colour observations

The ensemble spread is already sufficient to include more than 80% of the observations (accounting for a 30% observation error) The ensemble is not far from being reliable, even if still underdispersive (too many observations in the external ranges of the ensemble)

 \rightarrow objectively test consistency bewteen simulations and observations

 \rightarrow prerequisite to ocean colour **data assimilation de données**

Stochastic sea ice model

Stochastic sea ice model

An important difficulty of sea ice model is the unresolved diversity of dynamical sea ice behaviours

One of the most sensitive sea ice parameters is <u>ice strength</u> (P*):

multiplicative noise applied to P* (parametrization of Juricke et al., 2013, implemented in NEMO)

 \rightarrow Considérable effect on the mean ice thickness (in ORCA2) \rightarrow Intrinsic interannual variability is stimulated

The NEMO model becomes <u>probabilistic;</u> il is seen as a complex system, built up from uncertain components

→ The goal of ocean modelers is then to build a model as informative as possible at the lesser cost.

This probabilistic description requires <u>ensemble simulations</u>

- \rightarrow Objective comparison between simulations and observations
- \rightarrow Deal with model uncertainty in ocean data assimilation systems

An appropriate simulation of uncertainty is necessary to make the link between model, observations, and data assimilation systems

Uncertainty is bound to become a <u>key constituent of the systems</u> that we are using in oceanography, not something that can be thought separately from the results

Properly dealing with uncertainty will require an <u>integrated engineering approach</u> at the interface between oceanography and applied mathematics