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Since important decisions
must rely on simulations,

it is essential that its validity be tested,
and that its advocates be able to describe

the level of authentic representation
which they achieved.

Summer Computer Simulation Conference (1975),
cited by Richard Hamming (1997)
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Introduction



  

Sources of uncertainties in ocean models

●Even if the dynamics of U can be assumed deterministic,
the system A alone cannot be assumed deterministic.

●To obtain a deterministic model for A, one must assumed, either
that B is known (→ atmospheric forcing), or
that the effect of B can be parameterized (→ paramétrisation

of unresolved scales or unresolved biologic diversity).

                         → B is the main source of uncertainty in the model.



  

Motivations for a probabilistic approach

The deterministic approach is not always sufficient
to describe the dynamical behaviour of the system

Comparison between simulations and observations
is easier with the probabilstic approach

A good knowledge of model accuracy
is necessary to solve data assimilation problems



  

Probabiliste approach to ocean modeling

Stochastic ocean dynamics, explicitly simulating uncertainties

Fokker-Planck equation, for the probability distribution p(x,t),
following ideas at the origin of the Ensemble Kalman filter (Evensen, 1994)

Conditioning to observations, to reduce uncertainties

où

où

using an appropriate data 
assimilation method



  

Technological approach: ensemble simulations

1 ensemble simulation
=

1 single call to NEMO

1 MPI communicator for each member
→ each member lives its own life, as in standard NEMO

1 MPI communicator for each subdomain
→ “online” computations of any feature of p(x,t)

m times more processors
to run

m members together in parallel

Solution of the Fokker-Planck equation using a Monte Carlo method
→ ensemble NEMO simulation  →    échantillon de p(x,t)

To each processor is given
one of the n subdomains

from one of the m members



  

Uncertainty, as a key component of our systems

What are the uncertain components
of our systems ?

How to describe uncertainties ?

How does it participate
to the solution of inverse problems ?
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Explicit simulation of uncertainties



  

2.1 Stochastic formulation of NEMO

Objective: transform a deterministic model
into a  probabilistic model

Method: explicitly simulate uncertainties in the mode
using random numbers

Describe the
non-deterministic

nature of the system

Allow objective 
comparison

to observations

Introduce a weak 
model constraint

in data assimilation

Propose a
generic and flexible
technical approach

Develop
a first simple 

implementation

External forcing
Unresolved scales
Unresolved diversity



  

Autoregressive processes (1)

At every model grid point (in 2D or 3D), generate a set of
independent Gaussian autoregressive processes:

where w is a Gaussian white noise (→ order 1 process)
or an autoregressive process of order n-1 (→ order n process)

O
rd
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 1

O
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 2

Parameters a, b, c
to specify:

mean, standard deviation
and correlation timescale



  

Autoregressive processes (2)

Introduce a spatial
correlation structure

by applying a spatial filter
to the map of 

autoregressive processes:

→ This provides a generic technical way of implementing
a wide range of stochastic parameterizations

Modify the marginal
probability distributions

by applying anamorphosis
transformation to every 

individual Gaussian variable: 

(filtering operator)

(elliptic equation)

which can easily be made 
flow dependent if needed

(nonlinear function)

for instance to transform the 
Gaussian variables into 

lognormal or gamma 
variables if positive noise is 

needed



  

Technolgical approach: a new module in NEMO

These processes are generated using a new module in NEMO,
and can be used in any component of the model (Brankart et al., 2015):

circulation model, ecosystem model, sea ice model

→ Generic and flexible technological approach
→ Model independent implementation

→ Possible to simulate many kinds of uncertainty



  

Example 1: Stochastic perturbation
of parameterized tendencies

1st example: with this generic implementation, we can reproduce
the SPPT scheme proposed by Buizza et a. (1999):

1st example: with this generic implementation, we can reproduce
the SPPT scheme proposed by Buizza et a. (1999):

With this generic implementation, we can reproduce
the SPPT scheme proposed by Buizza et al. (1999)

Separate model operator
in NP (non-parameterized) et P (parameterized)

Assume that P is uncertain and
simulate uncertainty by a multiplicative noise x  

→ Use maps of autoregressive processes as x
(with mean 1), and specify the correlation structure

and marginal distribution of x.



  

Example 2: Stochastic parameterization
of unresolved fluctuations

To simulate the effect of unresolved fluctuations
in the nonlinear terms of the model equations

→ Use maps of autoregressive processes
as components x, y, z of the random walks.

Specify space and time correlation structure.

Generate 
fluctuations using  

random walks
around every

grid point

Ordre 1 Ordre 2 Ordre 3



  

Example 3: Stochastic parameterization
of unresolved diversity

To simulate the effect of the unresolved diversity of system
behaviours (e.g. biological diversity,...)

This assumes that the system simultaneoulsy includes
a variety of possible behaviours, which cannot be described

by one single value of each parameter.

For instance, the ecosystem usually includes
many different species of  phytoplankton and zooplankton,

each with its own behaviour,
while the model can only resolve

a few classes of species.

→ Use maps of autoregressive processes x
as multiplicative noise for the parameters, and specify

their correlation structure and their marginal distribution.
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Stochastic circulation model



  

Uncertainties in the computation of density

In the model, the large-scale density is computed form large-scale 
temperature and salinity, using the sea-water equation of state.

Because of the nonlinearity of the equation of state,
unresolved scales produce an average effect on density.

(a)
Mixing waters of equal 

density but different T&S
systematically increases

density (cabbeling)

(b)
Averaging T&S equations

systematically 
overestimates density (in a 

fluctuating,
non-deterministic way)



  

Random walks to simulate unresolved 
temperature and salinity fluctuations

Computation of the random fluctuations DT
i
 et DSi

as a scalar product of the local gradient with random 
walks x i

Random walks Assumptions
AR1 random processes

uncorrelated on the horizontal

fully correlated
along the vertical

5-day time correlation

horizontal std: 2-3 grid points
vertical std: <1 grid point



  

Stochastic equation of state
for the large scales

Stochastic parameterization (Brankart, 2015)

using a set of random T&S fluctuations
DT

i
 et DSi , i=1,...,p

to simulate unresolved T&S fluctuations

Correction Dr applied in the thermal wind equation, as in the 
semi-prognostic method of Greatbatch et al. (2004)

No effect if the equation of state is linear.
Proportional to the square of unresolved fluctuations.

No direct modification of T&S; no enhanced diapycnal mixing.
T&S only modified indirectly through a modification

of the main currents



  

Mean sea surface elevation (standard)



  

Mean sea surface elevation (stochastic)



  

Mean sea surface elevation difference



  

Averaged SST & SSS difference

Modification
of the mean flow

Modification
of the mean
SST  & SSS

Modification
of air/sea

interactions



  

→ assimilation of altimetric data (in SANGOMA, Candille et al., 2014)

Probability
distribution

for SSH

as simulate here by
ensemble NATL025

(large case
SANGOMA benchmark):

6 members among 96

Time
evolution
of the pdf

from June 2005 to
December 2006

Ensemble of mesoscale flows

without assimilation with assimilation of Jason1 and Envisat
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Stochastic ecosystem model



  

Stochastic ecosystem model

Multiple sources of uncertainty in ecosystem model:
unresolved biological diversity, unresolved scales, etc.

→ Considerable effect on the mean behaviour of the system
→ Increase of patchiness (↔ ocean colour data)

Unresolved diversity
multiplicative noise

in the SMS terms
of the model

Unresolved scales
stochastic processes 
explicitly simulating

unresolved
fluctuations of Ci



  

Ensemble simulation of the ecosystem

→ assimilation of  ocean colour observations
(projects FP7-MyOcean2 and SANGOMA, Garnier et al., 2015)

Probability distribution of chlorophyll concentration
as simulated here by ensemble NATL025/PISCES

(large case Sangoma becnhmark)
with stochastic parameterization of uncertainty: 4 members among 50

member 1 member 2 member 3 member 4

Time evolution
of the pdf

for phtyoplankton

from January to June 2005



  

Comparison to ocean colour observations

Rank of SeaWifs observations
in the ensemble simulation

(May 2005)

Rank histogram for SeaWifs
over the whole domain

The ensemble spread is already
sufficient to include more than 80% of 

the observations (accounting
for a 30% observation error)

The ensemble is not far from being 
reliable, even if still underdispersive

(too many observations in the external
ranges of the ensemble)

→ objectively test consistency bewteen simulations and observations
→ prerequisite to ocean colour data assimilation de données
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Stochastic sea ice model



  

Stochastic sea ice model

An important difficulty of sea ice model
is the unresolved diversity of dynamical sea ice behaviours

→ Considérable effect on the mean ice thickness (in ORCA2)
→ Intrinsic interannual variability is stimulated

One of the most sensitive
sea ice parameters
is ice strength (P*):

multiplicative noise
applied to P*

(parametrization of 
Juricke et al., 2013,

implemented in NEMO)
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Conclusions



  

Probabilistic model and ensemble simulations

The NEMO model becomes probabilistic;
il is seen as a complex system,

built up from uncertain components

→ The goal of ocean modelers is then to build a model
as informative as possible at the lesser cost.

This probabilistic description requires 
ensemble simulations

→ Objective comparison between simulations and observations

→ Deal with model uncertainty in ocean data assimilation systems



  

An appropriate simulation of uncertainty is necessary
to make the link between model, observations,

and data assimilation systems

Uncertainty is bound to become
a key constituent of the systems

that we are using in oceanography,
not something that can be thought

separately from the results

Properly dealing with uncertainty will require
an integrated engineering approach

at the interface between oceanography
and applied mathematics
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