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Data assimilation methods



What is data assimilation ?

Data Assimilation

ObservationsModel

Analysis



Outline

I Why data assimilation ?

I Basic concepts

I Sequential assimilation

• Nudging

• Successive corrections

• Optimal Interpolation

• 3D-Var

• Kalman filter

• Kalman smoother

I Non-Sequential assimilation

• 4D-Var

• Representer method



Goal of data assimilation

I Calibration: choose model parameters coherent with observations.
Example: linear regression.
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I Improve the model accuracy with help of observations

I Data assimilation provides also a framework to identify model errors

I State estimation: determine the “best” (e.g. the most probable) state of a
system



Errors and uncertainty

I Neither the model nor the observations are perfect.

I Both have errors (uncertainty).

I error = systematic error (bias) + random error

I How can we represent uncertainty?



Ways to represent uncertainty

I For Gaussian-distributed errors.

• Error bars (for scalar variables) (mean,
standard deviation) or confidence inter-
val

• error covariance, example: x = (T1, T2)

P =

(
P11 P12

P12 P22

)
• Error modes (EOF: empirical orthogonal

functions)

• Graphical representation: ellipsoid for
more than one variable (vectors) (mean,
error covariance): xP−1x = 1

I ensemble of possible values

I probability density function



Errors in an ocean model

Errors in an ocean model might be due to

I errors in initial conditions

I errors in open ocean boundary conditions

I errors in atmospheric fields (wind, air temperature, ...)

I errors in bathymetry

I inappropriate parameterizations

I discretization error

I ...

What about model errors in other disciplines?



Errors in your observations

Errors in your observations might be due to

I instrumental error (bias, drift, limited accuracy and precision)

Observations might not represent exactly the same as the model variables

I mismatch in resolved scale

I mismatch in resolved processes

I ...



Notation

n scalar number of state variables
m scalar number of observations
N scalar number of ensemble members
k scalar ensemble index k = 1, . . . , N
J scalar cost function
f function model giving the model state vector at the next time step
M matrix n× n linear (or linearized) model
xf/a/t vector n× 1 the model forecast/analysis/truth
Pf/a matrix n× n error covariance of xf/a

Sf/a matrix n×N square root decomposition of Pf/a

ηn vector n× 1 the model error
Q matrix n× n error covariance of ηn
yo vector m× 1 observations
ε vector m× 1 observation error
R matrix m×m error covariance of yo

H matrix n×m observation operator
E[·] expectation

The superscript f and a refer to forecast and analysis respectively.



Basic concepts

I The state vector xn at time tn. For a primitive equation model, its dimension
is about n = 5× 5000× 20 = 5 106.

I The dynamical model fn:

xn+1 = fn(xn) [= Mnxn + Fn if the model is linear]

x0 = xi

model ≈ reality (t: true):

xtn+1 = fn(xtn) + ηn

xt0 = xi + ηi

I xt is of course unknown for in a real application. The assimilation method do
not require the knowledge of xt.

I The observations:

yon = hn(xtn) + εn
[
= Hnx

t
n + εn if the model is linear

]
in general: Hn = interpolation to observation grid ◦ variable transformation

εn = instrumental error + representativity error



Figure 1: For example, an altimetry track and model grid points



Assumptions

I All errors are zero in average (i.e. no bias):

E[ηn] = E[ηi] = E[εn] = 0

I The covariances are known:

E[ηnη
T
n′ ] = Qnδnn′ E[ηnη

iT ] = 0

E[ηiηi
T

] = Pi E[ηnε
T
n′ ] = 0

E[εnε
T
n′ ] = Rnδnn′

I Some assimilation methods are optimal if those assumptions are verified.

I If the assumptions are not verified (in particular biased model), the assimilation
schemes can still given useful results.

I For some assimilation method the error covariance matrix of the model state x
is assumed to be known:

E[
(
x− xt

) (
x− xt

)T
] = P



Consistency check

I Innovation vector dn (time index n is dropped in the following):

d = yo −Hxf = yo −Hxt −H
(
xf − xt

)
E[d] = 0

E[ddT ] = R + HPHT

I HPHT is the error covariance of Hx.

I One can use these relationships to test if the model is unbiased and if the error
covariances are consistent.

I Normalized innovation z =
(
R + HPHT

)−1/2
d should follow a Gaussian distri-

bution with zero mean unit covariance.

I Verification statistics:
tr(zzT ) = χ2

m

The left-hand side of the previous equation follow is a sum of m Gaussian dis-
tributed variables squared. It follows thus a χ2 distribution with m degrees of
freedoms. This distribution has a mean of m and a variance of 2m (Dee, 1995).



I One can also show that (Desroziers et al., 2005):

E[
(
Hxa −Hxb

) (
yo −Hxb

)
] = HPfHT

E[(yo −Hxa)
(
yo −Hxb

)
] = R

E[
(
Hxa −Hxb

)
(yo −Hxa)] = HPaHT



Sequential assimilation

Initialization: xa0 = xi

?

Forecast: xfn+1 = fn(xan)

?

Analysis: xan+1 = xfn+1 + Kn

(
yon+1 − hn(xfn+1)

)
�

I Kn: Kalman gain

I Analysis = only unbiased estimation if h is linear



Unbiased linear combination

I Model forecast xf and observations yo are assumed unbiased

I Linear combination xa should be unbiased too E[xa] = xt

I General form of linear combination

xa = J xf + K yo

E[xa] = J E[xf ] + K E[yo]

E[xa] = J xt + KH xt

E[xa] = (J + KH) xt

therefore J + KH = I. If we choose J = I−KH,

I Analysis:

xa = (I−KH) xf + Kyo

xa = xf + K
(
yo −Hxf

)



Direct insertion

I Part of the state vector is directly observed (e.g. SST)

I The observed part of the state vector is replaced by the observations.

xanj′(i) = yoni

xanj = xfnj on non-observed grid points

I The ith observation corresponds to the j′(i) element of the state vector

I The observation operator will be one for the observed elements of the state vector
and zero otherwise (Hj′(i),i = 1).

xan = xfn + HT
(
yo − xfn

)
I Error in the model are assumed to be much larger than errors of the observations

I Problems

• Updated part of the state vector is inconsistent relative to the part of the
state vector which is not observed.

• Adjustment processes (e.g. geostrophic adjustment creating barotropic
waves, mixing) can degrade the model results



Nudging

I As in direct insertion, a part of the state vector must be directly observed.

I Analysis:

xanj′(i) = xfnj′(i) + ri

(
yoni − xfnj′(i)

)
xanj = xfnj on non-observed grid points

I In matrix form:
xan = xfn + riH

T
(
yo − xfn

)
I For a scalar variable: (1/r = relaxation time scale)

dx

dt
= f(x(t)) + r (yo(t)− x(t))

I Relaxation term is applied at the model time step.

I SST Nudging ⇒ correction of surface heat flux.

I Nudging towards climatology to prevent drift of the model.

I Relaxation reduces the model variability.



Example
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Demonstration

I A web-application showing the functioning of the Kalman filter is available at
http://www.data-assimilation.net/Tools/AssimDemo/.

I Review of what is a twin-experiment

I Very simple models can be used:

No time variation

The state vector x has two elements (x1, x2)T and there is no time variation:

xn+1 = xn (1)

The model matrix M is thus the identity matrix.

http://www.data-assimilation.net/Tools/AssimDemo/


1D advection in periodic domain

The state vector x has four elements and it is subjected to the following dynamics

x(n+1) =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

x(n) (2)

This simple system would be the result of a 1D advection scheme in a periodic do-
main with a constant velocity. The grid resolution over time step is equal to the velocity.

Without using the web-interface, what would be the model state after the 1st,
2nd,... time step?.



Oscillations

I The state vector x has two elements and it is governed by:

dx1

dt
= fx2 (3)

dx2

dt
= −fx1 (4)

I The numerical example uses f = 2π with a time step of ∆t = 0.1. One can
show that two successive states are related by:

x(n+1) =

(
cos(f∆t) sin(f∆t)
− sin(f∆t) cos(f∆t)

)
x(n) (5)

I What kind of oscillation would these equations describe in the ocean?



Two oscillations

The state vector x has four elements and it is governed by:

dx

dt
= Ax =


0 0 −a −b
0 0 −b −a
a b 0 0
b a 0 0

x

where a = 2π and b = π. The eigenvectors and eigenvalues of the model matrix
allows us to find an analytical solution:

x(t) =


C1 C2 C3 C4

C1 C2 −C3 −C4

−C2 C1 −C4 C4

−C2 C1 C4 −C3




cos(ωt)
sin(ωt)
cos(ω′t)
sin(ω′t)


where ω = a+ b and ω′ = a− b.



In the numerical example, this equation is solved with a Crank-Nicholson schema
and a time step ∆t = 0.1.

xn+1 − xn
∆t

= A
xn+1 + xn

2(
I− ∆t

2
A

)
xn+1 =

(
I +

∆t

2
A

)
xn

The model matrix is thus:
M =

(
I− ∆t

2
A
)−1 (

I + ∆t
2

A
)
.

xn+1 = Mxn (6)



Lorenz model

The classical Lorenz model (simplified mathematical model for atmospheric convection)
with σ = 10, β = 8/3 and ρ = 28.

dx

dt
= σ(y − x) (7)

dy

dt
= x(ρ− z)− y (8)

dz

dt
= xy − βz (9)

The system is discretized with a Runge Kutta time stepping scheme with ∆t = 0.05.



Nudging demo

I Model: identity xn+1 = xn

• Single observation (Model time steps between observations: 25)
http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=id&obs_tsteps=25

• Relaxation term acts as low pass-filter (Model time steps between observa-
tions: 1)
http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=id&obs_tsteps=1

• Over-fitting of observations if nudging relaxation time-scale is too short
(Model time steps between observations: 1, relaxation time-scale: 2)
http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=id&obs_tsteps=1&nudging_

ts=2

I Model: oscillation

• Based on the default values, try to find a good relaxation time-scale
http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=oscillation

• In which sense would you need to the change the other parameters to
improve the solution with assimilation?

http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=id&obs_tsteps=25
http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=id&obs_tsteps=1
http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=id&obs_tsteps=1&nudging_ts=2
http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=id&obs_tsteps=1&nudging_ts=2
http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=oscillation


Optimal Interpolation

I The observation operator must be linear

I The error covariance of the model state vector is defined as:

Pf,a
n = E[(xf,an − xtn)(xf,an − xtn)T ]

I We assume that Pf
n is known.

I The Kalman gain is chosen such that the norm of xan−xtn is as small as possible:

J(K) = E[(xan − xtn)TW(xan − xtn)] = tr(WPa
n)

I We introduce an error norm with the diagonal matrix W

I The optimal value of K is independent of W

Kn = Pf
nH

T
n

(
HnP

f
nH

T
n + Rn

)−1



How to derive the Kalman gain?

The analysis is given by:

xa = xf + K
(
yo −Hxf

)
(10)

= (I + KH) xf + Kyo (11)

The variance of the analysis xa is a function of the gain matrix K:

Pa (K) = (I−KH) Pf (I−KH)T + KRKT (12)

We want to have the overall smallest possible error on xa.

tr (WPa (K)) = tr
(
WPf

)
−2 tr

(
WKHPf

)
+ tr

(
WK HPfHTKT

)
+ tr

(
WKRKT

)
(13)

If K is the optimal gain, then a small increment of δK does not modify the total
error variance in the first order of δK.

tr (WPa (K + δK))− tr (WPa (K)) (14)

= 2 tr
(
WK HPfHT δKT

)
− 2 tr

(
WPfHT δKT

)
+ 2 tr

(
WKRδKT

)
= 2 tr

(
W
[
K
(
HPfHT + R

)
−PfHT

]
δKT

)



Since the perturbation δK is arbitrary, the expression inside the brackets has to be
zero.

K = PfHT
(
HPfHT + R

)−1
(15)

Error covariance of the analysis

Equation (12) can be expanded into:

Pa = Pf −KHPf −PfHTKT + K
(
HPfHT + R

)
KT (16)

= Pf −KHPf −PfHTKT + PfHTKT (17)

= Pf −KHPf (18)

where we used the optimal gain from equation (15).



Optimal Interpolation analysis

I Analysis:

xa = xf + PfHT (HPfHT + R︸ ︷︷ ︸
covariance of the i.v.

)−1 (yo −Hxf︸ ︷︷ ︸
innovation vector

)

Pa = Pf −KHPf

I For scalars: if we want to combine the temperature predicted by a model Tm
(σm) with an observation To (σo), the analyzed temperature is:

Ta =

(
1

σ2
m

+
1

σ2
o

)−1(
Tm
σ2
m

+
To
σ2
o

)
σ2
a =

(
1

σ2
m

+
1

σ2
o

)−1



Example

I Compare behavior of the variable x2 of the model “identity matrix” and “oscil-
lation”.

I http://data-assimilation.net/Tools/AssimDemo/?method=OI&model=id

I http://data-assimilation.net/Tools/AssimDemo/?method=OI&model=oscillation

I Describe the behavior of the OI scheme if the error correlation of x1 and x2 is
0.9 for the model “identity matrix”.

http://data-assimilation.net/Tools/AssimDemo/?method=OI&model=id
http://data-assimilation.net/Tools/AssimDemo/?method=OI&model=oscillation
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Figure 2: The observed part of a linear system with 4 state variables: the true state
vector, xt, the analysis xa, the state of the system without assimilation xb (b, back-
ground). The observations yo are extracted from xt. The trajectories xa and xb start
from a wrong initial condition.



Covariances

I P : n× n(n ≈ 106). 1012 variables to determine and to store !?

I Constraints: fields are generally “smooth”, close to hydrostatic and geostrophic
equilibrium (at sufficiently large scales) and obeying conservation laws,...

I Decomposition of P in variance D and correlation C

P = D1/2CD1/2

• Correlation length = typical spatial scale of the dominant process

• ⇒ “smooth” field

Correlation C



Reduced rank covariance matrices

I Representation of the covariances by the dominant eigenvectors and eigenvalues:

P = E[ηηT ] (19)

P = LDLT L : n× r, D : r × r (20)

In general r ≈ 10− 100.

I Ensemble representation: x(k), k = 1, . . . , N

P =< (x− < x >)(x− < x >)T >= XXT <>= ensemble average

In general slower convergence (N−1/2) if N increases. N ≈ 100− 500.

I Consequence: The model error η and the correction of the state vector xan − xfn
belong to the vector subspace spanned by the columns of L (or X).

I For the analysis, P = LDLT doesn’t have to be formed explicitly

K = L
(
D−1 + LTHTR−1HL

)−1
LTHTR−1

I But a reduced-rank covariance introduces an unphysical long-range correlation



Balanced covariances

I Conservation of e.g. salinity:
∫
Sd3x = const.

Geostrophic equilibrium: v = 1
ρ0f

ez ×∇ph(T, S, ζ)

I General form (linear constraints):

Cx = const.⇒ CP = 0

I Example:
∑

i cov(Si, Sj) = 0
In this case, the assimilation would not change the total salinity



3D-Var

I Minimization of the cost function:

J(x) =
(
x− xf

)T
Pf−1 (

x− xf
)

+ (yo − h(x))T R−1 (yo − h(x))

using its gradient:

∇J(x) = 2Pf−1 (
x− xf

)
− 2H(x)TR−1 (yo − h(x)) where Hjm =

∂hm
∂xj

I Minimization: conjugate gradient, Newton-Raphson method,...

I The covariance of the analysis:

Pa−1 =
1

2
∇x∇xJ (21)

= Pf−1
+ HTR−1H (22)

I Generalization of optimal interpolation to non-linear h

I No general inversion of m×m matrices.



I The term xTPf−1
x can be parameterized as “smoothness” constrain:∫
D

α2∇∇ϕ : ∇∇ϕ+ α1∇ϕ · ∇ϕ+ α0ϕ
2dD (23)

x is a discretization of the continuous field φ.



(a) Example of oceanographic field (b) Extracted observations with errors
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(c) Linearly interpolated field (d) Interpolated field with Diva

Figure 1: Reconstruction of a field based on scattered observations using linear interpolation and Diva.

4



Relationship between 3D-var and optimal interpola-
tion

For a linear H,

1

2
∇J(xa) = 0 (24)

= Pf−1 (
xa − xf

)
−H(x)TR−1 (yo −Hxa) (25)

Solving for xa:

(
Pf−1

+ HTR−1H
)

xa = Pf−1
xf + HTR−1

(
yo−Hxf + Hxf

)
(26)

xa = xf +
(
Pf−1

+ HTR−1H
)−1

HTR−1
(
yo −Hxf

)
(27)

Sherman-Morrison-Woodbury formula:(
Pf−1

+ HTR−1H
)−1

HTR−1 = PfHT
(
HPfHT + R

)−1
(28)

For a linear observation operator, H, 3D-Var is thus equivalent to optimal interpo-
lation!



I http://data-assimilation.net/Tools/divand_demo/html/

I First make some simple test with one and with two observations (one both sides
of a gradient), change the correlation length.

I Try to make the “best” analysis with 10 observations at well chosen locations.

http://data-assimilation.net/Tools/divand_demo/html/


The Kalman filter

I Error propagation through an algebraic expression such like ρ = ρ(T, S):

σ2
ρ =

(
∂ρ

∂T

)2

σ2
T +

(
∂ρ

∂S

)2

σ2
S

=
(

∂ρ
∂T

∂ρ
∂S

)( σ2
T 0
0 σ2

S

)(
∂ρ
∂T
∂ρ
∂S

)
I For a model:

Pn+1 = MnPnM
T
n + Qn where Mnjj′ =

∂fnj
∂xj′

I linear model: Kalman filter

I non-linear model: Extended Kalman filter (for error propagation the model is
linearized)
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Figure 3: Forecast of the error covariance with the tangent linear model

I Discuss error propagation for Q = 0 and Q 6= 0 for models “identity matrix”,

and “oscillation” (Pi = I and Pi =

(
0 0
0 1

)
).

I Comment on error propagation with Lorenz model.

http://data-assimilation.net/Tools/AssimDemo/?method=KF&model=id


(Extended) Kalman filter scheme

Initialization: xa0 = xi

Pa
0 = Pi

?

Forecast: xfn+1 = fn(xan)

Pf
n+1 = MnP

a
nM

T
n + Qn

?

Analysis: xan+1 = xfn+1 + Kn+1

(
yon+1 − hn+1(xfn+1)

)
Kn+1 = Pf

n+1H
T
n+1

(
Hn+1P

f
n+1H

T
n+1 + Rn+1

)−1

Pa
n+1 = Pf

n+1 −Kn+1Hn+1P
f
n+1

�
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Figure 4: Example of a Kalman filter applied to a linear system. The curves from the
first graph correspond to the observed part of the system. The lower panel shows the
evolution of the error covariance. The error variance of the state vector is reduced at
every assimilation cycle.



Numerical example: a water column

I Application of the Extended Kalman Filter

I Model represents a water column governed by:

∂u

∂t
+ fez × u =

∂

∂z

(
ν̃
∂u

∂z

)
(29)

∂T

∂t
=

∂

∂z

(
λ̃
∂T

∂z

)
(30)

∂S

∂t
=

∂

∂z

(
λ̃
∂S

∂z

)
(31)

∂k

∂t
= ν̃

(
∂u

∂z

)2

− ν̃

16
k2 − ν̃ ∂b

∂z
+

∂

∂z

(
ν̃
∂k

∂z

)
(32)

I The prognostic variables u, T, S et k

I The diagnostic variables: buoyancy b, the Richardson number Ri the turbulent
diffusibility ν̃ and λ̃:



b(T, S) =
ρ(T, S)− ρ0

ρ0

(33)

Ri =
∂b

∂z

(
∂u

∂z

)−2

(34)

ν̃ = ν̃(Ri, k) (35)

λ̃ = λ̃(Ri, k) (36)

Twin experiment

I Pseudo-observations = surface temperature generated by the model + noise

I For the assimilation, the model is started with a different initial condition than
the model run that generated the observations

I Water column of 100 m depth and 30 vertical levels
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Figure 5: Temperature as a function of time (hours) and depth. Only the upper 50
meters are shown.



Applications outside oceanography

First applied to the trajectory estimation for the Apollo program

I Attitude and Heading Reference
Systems

I Autopilot

I Battery state of charge estimation

I Brain-computer interface

I Chaotic signals

I Tracking of objects in computer vi-
sion

I Dynamic positioning

I Economics, in particular macroeco-
nomics, time series, and economet-
rics

I Inertial guidance system

I Orbit Determination

I Radar tracker

I Satellite navigation systems

I Seismology

I Sensorless control of AC motor
variable-frequency drives

I Simultaneous localization and map-
ping

I Speech enhancement

I Weather forecasting

I Structural health monitoring



Some approximations of the Kalman filter

I Pham et al. (1998); Pham (2001). Evolutive error space

I Evensen (1994, 2007): Ensemble Kalman filter

I RRSQRT: reduced rank approximation of the square root filter (reformulation of
the Kalman filter)

I Ensemble Transform Kalman Filter (Bishop et al., 2001), Ensemble Adjustment
Kalman Filter (Anderson, 2001),...

Kalman Filter Demonstration

No time variation

Test to carry out:

1. Only the first variable x1 is observed, Pi = I, R = 0.2 and no model noise Q = 0
is assumed. Explain the behavior of x1, x2 in time and their error covariance
matrix.

2. How to change the previous setup, to increase the rate of convergence of x1 to
the true state?



3. Use default values, except assuming that initially x1 and x2 are perfectly corre-
lated. Explain the behavior of x2.

4. Use default values, except assuming that Q = 0.1I (“random walk”). Discuss
first the free run (state vector and its error covariance/error standard deviation)
and then the results with assimilation.

1D advection in periodic domain

1. Using the default value, explain the behavior of the observed variables x1 and x3

(and their error covariance). Why do the non-observed variables get corrected
too?

2. Using the default values, except reducing the model time step between obser-
vations from 5 to 4. We increase the frequency of assimilation, yet no variable
converges anymore. Why? Can this happen in oceanography? Think of an
example.

3. Use default values, except assuming that Q = 0.1I. How could you use the
error covariance of the results with assimilation to justify the use of optimal
interpolation?



Oscillations

1. Using the default values, why does the error covariance P remains equal to the
identity matrix of the free run?

2. What different changes to the default values are necessary to make the run with
assimilation converge to the true solution?

3. Discuss the correction by data assimilation of the variables x1 and x2 (not directly
observed).



Propagation of uncertainty - Non-Gaussian errors

I The probability density p(x, t) for the random vector Xt satisfies the Fokker-
Planck equation

∂p(x, t)

∂t
= −

N∑
i=1

∂

∂xi
[fi(x)p(x, t)]︸ ︷︷ ︸

“advection”

+
N∑
i=1

N∑
j=1

∂2

∂xi ∂xj
[Qij(x)p(x, t)]︸ ︷︷ ︸

“diffusion”

I ηn is assumed to be normally distributed N(0,Q)



Propagation of uncertainty - Non-Gaussian errors

I Even if the model is non-linear, the Fokker-Planck equation is linear (not always
non-chaotic)!

I Impossible to solve for large geophysical problems

I If every dimension of x would be discretized with 100 grid points, then pdf p
would represent 100n numbers.

I Equation is similar to an advection-diffusion dimension in fluid dynamics (however
in a very high dimensional space)

I If this equation represents the Eulerian view, what would be the equivalent La-
grangian view?



Ensemble simulation

I Lagrangian approach to the Fokker Planck simulation → ensemble simulation

I In an ensemble simulation, a model is run a large number of times with different
forcings, initial condition, parametrization,... within the uncertainty limit of the
perturbed variable

I The spread of the ensemble reflects the resulting uncertainty in the model results
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Ensemble Kalman filter

From the ensemble of forecast states xf
(k)

where k = 1, . . . , N one can compute the
ensemble mean

xf =
1

N

N∑
k=1

xf
(k)

(37)

and ensemble covariance:

Pf =
1

N − 1

N∑
k=1

(
xf

(k) − xf
)(

xf
(k) − xf

)T
(38)

We construct the columns of the matrix Sf by:

(
Sf
)
k

=
xf

(k) − xf√
N − 1

(39)

where Sf is a n×N matrix, which each column being the difference between each
member and its ensemble mean. Its mean over all columns it thus zero. As many other
assimilation schemes (SEEK, RRSQRT, ESSE, EnKF), Pf is decomposed in terms of
this square root matrix Sf :

Pf = SfSf
T

(40)



Typically, the number of ensemble members N is much smaller than the state
vector size n. We rewrite the Kalman Filter analysis, by avoiding any matrix of the
size n× n:

K = (SfSf
T

)HT
[
H(SfSf

T
)HT + R

]−1

(41)

= Sf (HSf )T
[
HSf (HSf )T + R

]−1
(42)

= Sf
[
I + (HSf )TR−1HSf

]−1
(HSf )TR−1 (43)

Where the Sherman-Morison-Woodbury identity has been applied from (42) to
(43). This identity can be expressed as:

ABT
(
C + BABT

)−1
=
(
A−1 + BTC−1B

)−1
BTC−1 (44)

with A = I, B = HSf , C = R. That is, instead of performing the inverse in
space of matrix A the inverse is done in the space of the matrix C. We also substi-
tute Pf in the expression of the analysis covariance error Pa by its square root matrices:



Pa = Pf −KHPf (45)

= SfSf
T −KHSfSf

T
(46)

= SfSf
T − Sf

[
I + (HSf )TR−1HSf

]−1
(HSf )TR−1HSSf

T
(47)

= Sf
[
I−

(
I + (HSf )TR−1HSf

)−1
(HSf )TR−1HS

]
Sf

T
(48)

In order to avoid to form Pa explicitly, we need to express Pa also in terms of the
square root matrices Sa.

Pa = SaSaT (49)

This is possible when the following eigenvalue decomposition is made :(
HSf

)T
R−1HSf = UΛUT (50)

where UTU = I and where Λ is diagonal. U and Λ are both of size r × r.

Using the decomposition (50) in equation (48) one obtains:



Pa = Sf
[
I− (I + UΛUT )−1UΛUT

]
Sf

T
(51)

= Sf
[
I− (I + UΛUT )−1

(
UΛUT + I− I

)]
Sf

T
(52)

= Sf
[
I− (I + UΛUT )−1

(
UΛUT + I

)
+ (I + UΛUT )−1

]
Sf

T
(53)

= Sf
[
I− I + (I + UΛUT )−1

]
Sf

T
(54)

= Sf (I + UΛUT )−1Sf
T

(55)

= Sf (UUT + UΛUT )−1Sf
T

(56)

= SfU(I + Λ)−1UTSf
T

(57)

= SfU(I + Λ)−1/2(I + Λ)−1/2UTSf
T

(58)

So we found a square root decomposition of Pa in terms of SfU(I + Λ)−1/2. But
in order to construct an ensemble from the columns of Sa, its mean has to be zero.
Therefore we multiply it by UT (which does not change the product SaSaT ):

Sa = SfU(1 + Λ)−1/2UT (59)

The decomposition (50) can also be used in the computation of the Kalman gain
K by:



K = Sf
[
I + (HSf )TR−1HSf

]−1
(HSf )TR−1 (60)

= Sf
[
UUT + UΛUT

]−1
(HSf )TR−1 (61)

= SfU(I + Λ)−1UT (HSf )TR−1 (62)

The ensemble after the analysis will have the following mean:

xa = xf + K
(
yo −Hxf

)
(63)

Based on the mean xa and the columns of Sa, an ensemble can be reconstructed:

xa(k) = xa +
√
N − 1 (Sa)k (64)



Exercise

I Compare the results of the linear models using the Extended Kalman Filter and
the Ensemble Kalman Filter.

I Compare the results of the Lorenz 1963 model using the Extended Kalman Filter
and the Ensemble Kalman Filter.



Particle filter

Bayes Theorem

p(x|yo) =
p(yo|x)p(x)

p(yo)
(65)

I p(x|yo): a posteriori pdf, pdf of the model state x given the observations yo.

I p(x): a priori pdf, pdf of the model state x before knowing the observations yo.

I p(yo|x): probability of a measurement yo if the system is in the state x. For
Gaussian observations errors:

p(yo|x) = A exp
(

(yo − h(x))T R−1 (yo − h(x))
)

(66)

I p(yo): The denominator is just a normalization to ensure that the pdf integrates
to one.



Particle filter

The model pdf is represented by an ensemble (or by particles) x(k) (k = 1, . . . , N):

p(x) =
1

N

K∑
k=1

δ(x− x(k)) (67)

Initially all particles are equally probable, but by comparison to the observations,
the particles who are closer to the observations are more likely than the particles who
a further away from the observations.

p(x|yo) =
1

N

N∑
k=1

wkδ(x− x(k)) (68)

where the weights are given by: wk = p(yo|x(k))∑N
k=1 p(y

o|x(k))

I Re-sampling: Particles with very low probability are ignored and particles with
high probability are duplicated.

I No Gaussian assumption of the model error is necessary.

I Curse of dimensionality: Large number of particles are needed for high-
dimensional problems.



Sangoma diagnostics

I Sangoma project: http://data-assimilation.net/

I Provides several diagnostics and utilities mainly related to ensemble-based data
assimilation:

• Ensemble rank histograms, mutual information, relative entropy

• Ensemble sensitivity of posterior mean to observations in a particle filter

• Array modes and associated quantities

• Brier skill score, CRPS, RCRV

• Spatially correlated ensemble perturbations

• Perturbation based on EOFs

• Weakly constrained ensemble perturbations (ensemble perturbations that
have to satisfy an a priori linear constraint)

• Dominant POD modes from an ensemble of snapshots.

• Empirical Gaussian Anamorphosis (the empirical transformation function
such that a transformed variable follows a Gaussian distribution)

• Observation operator for HF radar surface currents

http://data-assimilation.net/


Non-sequential assimilation

I Strong constraints (Qn = 0). 4D-Var, adjoint methods

I Weak constraints (Qn 6= 0). Representer method

4D-Var

I Minimization of the following cost function:

J(x0) =
(
x0 − xi

)T
Pi−1 (

x0 − xi
)

+
N∑
n=1

(yon − hn(xn))T R−1
n (yon − hn(xn))

with xn+1 = fn(xn).

I The constrain is introduced in the cost function with the Lagrangian multiplier



4D-Var

I Gradient of the cost function:

∇x0J = 2 Pi−1 (
x0 − xi

)
− 2 MT

0λ0

is calculated using the adjoint variable λn:

xn+1 = fn(xn)

λn−1 = MT
nλn + HT

nR−1
n (yon − hn(xn))

λN = 0

I The adjoint model is integrated backwards in time!
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Figure 6: 4D-Var. The cost function is explicitly minimized; Upper panel: the observed
component of the state vector xt (truth), xa (with assimilation) and xb (without
assimilation). After 20 iterations, the solution xa is already quite close to the real
trajectory xt. Lower panel: The adjoint variable λ corresponding to the observed part
of the state vector.



4D-Var

Init. Cond.,
bound. Cond.,
parameters (u)

- Models fn
and hn

-
Observable
model
predictions (v)

v = g(u)

A perturbation on the inputs δu is linked to the perturbations on the outputs δv by:

δv = G δu with Gij =
∂vi
∂uj



4D-Var

Cost function:
J(v) = J [g(u)]

The sensitivity of J relative to u is obtained by the gradient of the cost function J :

∇uJ = GT ∇vJ

For a time integration, one has:

g = gN ◦ . . . g2 ◦ g1

G = GN . . .G2G1

GT = GT
1 GT

2 . . .G
T
N

Incremental formulation

I Efficient algorithm to minimize a quadratic function

I Model and observation operators are linearized around first guess of the model
trajectory → incremental formulation:



J(δx0) =
(
x0 + δx0 − xi

)T
Pi−1 (

x0 + δx0 − xi
)

+
N∑
n=1

(yon − hn(xn)−Hnδxn)T R−1
n (yon − hn(xn)−Hnδxn)

with xn+1 = fn(xn) and δxn+1 = Mnδxn.

I Minimize this function using the conjugate gradient method (inner loops)

I After the minimum is reached, a new model trajectory is computed with the full
non-linear model

I The model and observation operator are linearized around this new trajectory
and the whole procedure is repeated (outer loops)



non−linear model

convergence?

gradient

adjoint model

tangen linear model

o
u
te

r 
lo

o
p

in
n
e
r 

lo
o
p

xn+1 = fn(xn)

δxn+1 = Mnδxn

∇x0J

λn−1 = MT
nλn + HT

nR−1
n (...)



Conjugate gradient method

x0

x I Minimizing f(x) = 1
2
xTAx− xTb is

equivalent to solving Ax = b for x.

I A is a symmetric and positive defined
matrix.

I All search directions pi are “conju-
gate” (pTi Apj = 0 if i 6= j).

I Conjugate gradient method con-
verges faster than the steepest de-
scent method.



Derivation of tangent linear

I Model can be broken down to a series instructions f (p) where every instruction
corresponds to a line of code

f(x) = f (p)(. . . f (2)(f (1)(x))) (69)

I By applying the chain-rule, the tangent linear of f is:

F = F(p) . . .F(2)F(1) (70)

where Fij = ∂fi
∂xj

and F
(p)
ij =

∂f
(p)
i

∂xj

I Let’s consider a simple statement

d = ab+ c (71)

I This statement can be seen as a function f with input a, b and c.

I The tangent linear code is obtained by differentiation of f :

δf =
∂f

∂a
δa+

∂f

∂b
δb+

∂f

∂c
δc (72)

I For the example statement, one obtains:

δd = bδa+ aδb+ δc (73)



Derivation of adjoint

I The adjoint is the transpose of the tangent linear model

FT = F(1)TF(2)T . . .F(p)T (74)

I The example statement can also be written in matrix form:
δa
δb
δc
δd

 =


1 0 0 0
0 1 0 0
0 0 1 0
b a 1 0




δa
δb
δc
δd


I The adjoint variables δa∗ are governed by the transpose of this matrix:

δa∗

δb∗

δc∗

δd∗

 =


1 0 0 b
0 1 0 a
0 0 1 1
0 0 0 0




δa∗

δb∗

δc∗

δd∗


or



δa∗ = δa∗ + b δd∗

δb∗ = δb∗ + a δd∗

δc∗ = δc∗ + δd∗

δd∗ = 0

I For an adjoint integration one needs to have the state of the non-linear forward
model

I All loops are reversed

I Automatic adjoint generators exist (TAMC, OpenAD, ODYSSEE)

http://autodiff.com/tamc/
http://www.mcs.anl.gov/OpenAD/


Demo

I Use the 4DVar method with the linear model and compare the results to the
Kalman Filter

I Use the Lorenz model by varying number of time steps

I http://data-assimilation.net/Tools/AssimDemo/

http://data-assimilation.net/Tools/AssimDemo/


Cost function of the Lorenz Model

I Long assimilation window: more observations, but complex cost function

I Short assimilation window: less observations, but easier to minimize cost function

I Test: assimilate every model time step, true initial condition is x = (5, 0, 0)

I Error variance of initial condition and observations is 1.



log of Cost function (x3 = 0)
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log of Cost function (x3 = 0)
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The representer method

I Hypothesis: fn and hn are linear

I Cost function:

J(x0, . . . ,xN) =
(
x0 − xi

)T
Pi−1 (

x0 − xi
)

+
N∑
n=1

(yon −Hnxn)T Rn
−1 (yon −Hnxn)

+
N−1∑
n=0

(xn+1 −Mnxn − Fn) Qn
−1 (xn+1 −Mnxn − Fn)



The representer method

First guess xbn
xbn+1 = Mnx

b
n + Fn

x0 = xi

Adjoint of the repre-
senters Λnn′

Λn−1n′ = MT
nΛnn′ + HT

nδnn′

ΛNn′ = 0

Representers R̃nn′

R̃n+1n′ = MnR̃nn′ + QnΛnn′

R̃0n′ = PiMT
0 Λ0n′

Corrections bn

b =
(
R + HR̃

)−1 (
yo −Hxb

)
y
oT

= (y
o
1
T
, . . . ,y

o
N

T
)

Hx
bT

= (H1x
b
1
T
, . . . ,HNx

b
N

T
)

b
T

= (b
T
1 , . . . ,b

T
N )

R = diag (R1, . . . ,RN )

HR̃ =


H1R̃11 · · · HN R̃N1

.

.

.
. . .

.

.

.

H1R̃1N · · · HN R̃NN


Analysis xn
xn+1 = Mnxn + Fn + Qnλn

x0 = xi + PiMT
0λ0

λn−1 = MT
nλn + HT

nbn

λN = 0



Interpretation

I The representers are covariances:

R̃nn′ = E[(xbn − xtn)(Hn′x
b
n′ −Hn′x

t
n′)

T ]

I Analysis with the representer method = optimal interpolation with the time
coordinate included in the state vector

I nm + 2 integrations with numerical model nm + 1 integration with the adjoint
model.

I Method becomes prohibitive if m is large (satellite data)



Application to assimilation of HF
Radar currents / West Florida Shelf



Observations

I HF radar radial surface currents maps (CODAR) detided

I 2-day averaged

I error variance estimate provided by instrument is used

Redington Shore
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Figure 7: Radial velocities measured from the Redington and Venice sites (West Florida
Shelf) on December 9, 2005. Positive values represent a current towards the antenna.



State vector

The state vector includes:

I elevation

I horizontal velocity

I temperature and salinity

I 2-day averaged wind stress

Model error covariance

I The error covariance defines how two different variables at different locations are
related

I 100-member ensemble of wind fields

• EOF analysis of the u and v wind components

• random perturbations proportional to spatial EOFs

I For each wind field, the WFS ROMS model was integrated for 30 days



I The resulting ensemble was used for the assimilation of HF Radar currents

I Error covariance assumed constant in time ⇒ “OI-approximation”.
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(a) Correlation between the u-velocity at a
specific location marked by the circle and the
u-velocity at all other model grid points.
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(b) AVHRR SST and model SST on January 29,
2004

I The velocity error covariance on the shelf is closely related to the presence of
the meandering front on the shelf. The covariance structure is a superposition
of various ensemble members with different phase.



Sequential algorithm

I Data is assimilated every 2 days

I Model is started at t-2 and run
for 3 days

I Currents are averaged over t-1
and t+1

I Wind stress is also averaged
over t-1 and t+1

I Analysis increment is computed
based on the model error covari-
ance expressed as an ensemble

I This correction is added to the
instantaneous model field at t to
produce a new initial condition
(IC)

I The wind stress correction is ap-
plied uniformly to the wind forc-
ing between t and t+1



Comparison with independent observations

Figure 8: Location of ADCP sites



(a) ADCP observations and model runs. The asterisks
on the time axis of the 4th panel represent Tropical
Storm Arlene, Hurricane Dennis, Hurricane Katrina
and Hurricane Ophelia.
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(b) Time-averaged RMS error between
ADCP observations and the model run
without assimilation (free model) and
with assimilation.

Figure 9: Currents at station C10



(a) ADCP observations and model runs.
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(b) Time-averaged RMS error.

I Free model shows an unrealistic Northwestward current at C12 during summer
which is corrected through the assimilation

I The time averaged RMS error is reduced.



Application to assimilation of HF
Radar currents / German Bight



Outline

I Weakly constrained ensemble perturbations

I Example 1: Estimation of tidal boundary conditions using

HF radar observations

I Example 2: Estimation of wind forcing using HF radar

observations



Weakly constrained ensemble perturbations

I For ensemble schemes, unknown initial and boundary conditions, parameters, ...
have to be perturbed within their range of uncertainty.

I By validation of the model with observations one can obtain an estimate of the
magnitude of the perturbation.

I But which spatial structure?

I Method to create ensemble perturbation that satisfy a priori linear constraints

I Example of constraints:

• geostrophic equilibrium

• zero horizontal divergence of surface winds

• stationary solution to the advection-diffusion equation

• the linear shallow water equations

• perturbations should be close to a subspace defined by e.g. empirical or-
thogonal functions (EOFs).

• ...



Probability of a perturbation

I To describe our a priori knowledge of what a realistic perturbation is, we intro-
duce a cost function J , similar to the cost function used in variational analysis
techniques:

J(x) = “linear balance”2 + “smooth”2 + “limited amplitude”2

I The cost function can be used to define the probability of a perturbation x (e.g.
Kalnay, 2002):

p(x) = α exp (−J(x)) (75)

I Perturbations are derived from the Hessian matrix of J .

I Article and source code (for MATLAB and GNU Octave) is available at http:

//modb.oce.ulg.ac.be/mediawiki/index.php/WCE

I “Dynamically constrained ensemble perturbations - application to tides on the
West Florida Shelf”. Ocean Science, 5(3):259–270, 2009. http://www.ocean-sci.
net/5/259/2009.

http://modb.oce.ulg.ac.be/mediawiki/index.php/WCE
http://modb.oce.ulg.ac.be/mediawiki/index.php/WCE
http://www.ocean-sci.net/5/259/2009
http://www.ocean-sci.net/5/259/2009


Impact of barriers

I The “smoothness” constraint is implemented through a diffusion operator (lapla-
cian), it takes thus the land-sea mask into account

I Ensemble covariance using “classical” Fourier modes (a) and constrained pertur-
bations based on the land-sea mask (b).



Harmonic shallow water equations

I For tidal models, perturbations should be approximately a harmonic solution to
the shallow water equations
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I Horizontal covariance of the constrained perturbations between the point near
the open boundary marked by a black dot and all other grid points.



German Bight model

I General Estuarine Ocean Model (GETM Burchard and Bolding, 2002)

I 3-D primitive equations with a free-surface

I 21 σ levels, resolution of about 0.9 km.

I nested in a 5-km resolution North Sea-Baltic Sea model

I ETOPO-1 topography with observations from BSH

I Atmospheric fluxes are estimated by the bulk formulation using 6-hourly ECMWF
re-analysis

I Implementation by GKSS (Staneva et al., 2009).



HF radar observations
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locity observations
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Empirical Ocean Tides (EOT08a)
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I M2 amplitude (in m) and phase (in degrees) of EOT08a for the German Bight
based on altimetry.

I complex tidal parameters are assimilated



Smoother scheme

I M2 tidal boundary conditions are perturbed within the range of their uncertainty
to create a ensemble with 51 members. Perturbations are constrained by the
linear shallow water equations.

I The GETM model is run for 40 days with each of those perturbed boundary
values.

I All HF radar observations at any time instance within the integration period and
the EOT parameters are grouped in the observation vector (vector yo) with their
corresponding error covariance (matrix R) estimated by cross-validation.

I Observations are extracted from perturbed model solution (vector h(x(k))).

I Schematically, the non-linear operator h(·) performs the following operations:

h(·) = Interpolation to obs. location ◦Model integration with perturbed forcing
(76)



Observations

Analysis

Boundary 
conditions

Surface 
currents

Surface 
elevation

model

Boundary 
conditions

Surface 
currents

Surface 
elevation

model

Boundary 
conditions

Surface 
currents

Surface 
elevation

model

Free model run

… … … …

Surface 
currents

Surface 
elevation

Boundary 
conditions

Surface 
currents

Surface 
elevation

model

pe
rt

ur
ba

tio
ns Ensemble run

x h(x)model



Smoother scheme

I The optimal perturbation is given the Kalman analysis (using non-linear obser-
vation operators as in Chen and Snyder (2007)):

xa = xb + A (B + R)−1 (yo − h(xb)
)

(77)

I where the matrices A and B are covariances estimated from the ensemble.

A = cov(xb, h(xb)) =
〈

(x− 〈x〉) (h(x)− 〈h(x)〉)T
〉

(78)

B = cov(h(xb), h(xb)) =
〈

(h(x)− 〈h(x)〉) (h(x)− 〈h(x)〉)T
〉

(79)

where 〈·〉 is the ensemble average.

I But covariance matrices do not need to be formed explicitly. Analysis is performed
in the subspace defined by the ensemble members.



Smoother scheme

I For a linear model and an infinite large ensemble, equation (77) minimizes,

J(x) = (x− xb)TPb−1
(x− xb) + (yo − h(x))TR−1(yo − h(x)) (80)

or

J(x) = (x− xb)TPb−1
(x− xb) +

∑
n

(yon − (h(x)n))TRn
−1(yon − (h(x)n))(81)

where n references to the indexed quantifies at time n. This is the cost function
from which 4D-Var and Kalman Smoother can be derived.

I Approach is closely related to Ensemble Smoother (van Leeuwen, 2001), 4D-
EnKF (Hunt et al., 2007) and AEnKF (Sakov et al., 2010) where model tra-
jectories instead of model states are optimized and to the Green’s method with
stochastic “search directions”

I The model is rerun with the optimized boundary values for 60 days.



RMS difference

RMS2 = lim
T→∞

1

T

∫ T

0

(A cos(ωt− φ)− A′ cos(ωt− φ′))2dt (82)

=
A2 + A′2

2
− AA′ cos(φ− φ′) (83)
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Comparison with un-assimilated observations (M2)
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I RMS difference between surface current observations (not used in the assimi-
lation) due to the M2 tides and the corresponding model results without (left
panel) and with assimilation (right panel).

I Analysis RMS compared to unassimilated data is only 0.002 m/s larger than
compared to assimilated data



Tide gage observations

Helgoland Cuxhaven
amplitude phase RMS amplitude phase RMS

Observations 1.13 304 1.36 334
Free 0.81 318 0.28 0.95 15 0.63

Assimilation 0.97 302 0.12 1.08 2 0.46

Table 1: Comparison with tide gage observations. Amplitude is in m and phase in
degrees.

I Tide gage observations from different time period → only comparison of tidal
parameters

I Helgoland within the area covered by radar, but not Cuxhaven

I The assimilation reduces the RMS error by a factor of 2 for Helgoland and by a
factor of 1.4 for Cuxhaven.

I Ocean Science, 6, 161–178, 2010 http://www.ocean-sci.net/6/161/2010/

os-6-161-2010.pdf.

http://www.ocean-sci.net/6/161/2010/os-6-161-2010.pdf
http://www.ocean-sci.net/6/161/2010/os-6-161-2010.pdf


Wind estimation from HF radar observations

I Ensemble of 100 wind forcings are created (by using a Fourier decomposition)

I estimation vector x: u- and v- component of wind forcing

I observations: yo: surface currents

I “observation operator” h(·):

h(·) = Interpolation to obs. location ◦Model integration with perturbed wind
(84)
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Time-averaged wind correction statistics

I RMS difference between analyzed winds and ECMWF winds (averaged over time)

I RMS difference scaled by wind standard deviation
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Figure 10: Measured wind speed, wind speed from ECMWF and analyzed wind speed
at Helgoland. Units are m/s.
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Figure 11: Measured wind speed, wind speed from ECMWF and analyzed wind speed
at Sylt. Units are m/s.



Summary

I Ensemble assimilation methods require realistic perturbation schemes (error co-
variances)

I Use of dynamical relationships (similar to Variational analysis)

I Optimizing tidal boundary conditions and wind forcing with a smoother scheme

I HF radar observation is a very valuable data set for constraining regional and
coastal models



Summary of sequential methods

?

?

?

?

Kalman smoother, 4D-Var, Representer method

Kalman filter

Optimal Interpolation, 3D-Var

Nudging

Direct Insertion

only past data

constant Pf
n

R and Pf
n diagonal

R→ 0

Slides on http://modb.oce.ulg.ac.be/wiki (Lecture → Introduction to data as-
similation)

http://modb.oce.ulg.ac.be/wiki
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