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Chapter 1

Introduction

This task aims to develop and test a methodology that allows to evaluate the per-
formance of different observational arrays at detecting prior errors in an ensemble
of simulations that is to be assimilated.

As an alternative to performing Observing System Simulations Experiments
(OSSE), this tasks proposes to use two complementary approaches, that exploit
existing, costly to perform, ensembles of simulations, and that allow to evaluate
this performance without performing data assimilation. Instead, both approaches
deal with observation-space view of prior errors, and exclude controllability. The
first method, the ArM method, is part of the Sangoma toolbox (WP2), and rep-
resents the stochastic form of the Representer Matrix Spectrum described in Le
Hénaff et al. (2009). The ArM approach features a simple criterion to character-
ize an observational array performance at detecting “prior” (forecast) errors. The
second method, tr(HK), is a new, alternative approach, that is both compatible
and complementary with the ideas behind the ArM method. It uses a “posterior”
approach, quantifying the impact that an observational array would have, if it was
to be assimilated by the ensemble. Hence, whereas ArM is about how an array
“views” the prior errors (it does not depend of a particular form of gain), tr(HK)
deals with observation-space gain, and thereby, with the effectiveness of the cor-
rection in observation space (it depends on the form of the gain). Note that unlike
tr(HK), the ArM method is not localized in the current form as it is meant for
the assessment of localized arrays (mostly coastal), and can only be used in an
ensemble-based approach.

After illustrating briefly the RMSpectrum/ArM method, we use tr(HK) to eval-
uate the relevance of four observational networks (two satellites and two in situ
measurements), given an assimilation system that uses the Ensemble Kalman
filter (Evensen, 2003), and an ensemble that covers the North Atlantic and is de-
signed to assimilate altimetric observations in the Gulf Stream region (Candille et
al. 2015). We test the relevance of the four observational networks individually
and together, on the free run as well as on the assimilated ensemble. We focus
on the impact of assimilating sea surface height (SSH) as observed by two satel-
lites, as well as temperature and salinity profiles (0-2000m) as observed in situ.
Such an evaluation should allow a better understanding of the impact of differ-
ent observational networks on an assimilation system, thereby leading to a better
optimization in the future design of the observational networks to be assimilated.
Note that the tr(HK) method will be further developed in the Atlantos project.
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The plan of the deliverable is as follows: chapter 2 briefly describes the RM-
Spectrum/ArM approach, chapter 3 describes the tr(HK) approach, chapter 4
describes the results from the tr(HK) approach, and chapter 5 summarizes the
conclusions that have been obtained from this work.

4 Introduction
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Chapter 2

The RMSpectrum/ArM approach

2.1 Method

RMSpectrum (“Representer Matrix Spectrum”) and ArM (“Array Modes”) are based
on the very same ideas, but they differ by their implementation. In the RMSpec-
trum approach (Le Hénaff et al. 2009), the prior error covariance matrix can be
of any origin, and the problem is solved in the form of an eigenspectrum problem.
In the ArM approach (De Mey, 2014, pers.comm., available in the SANGOMA
Tools), the prior errors are assumed to be approximated by a stochastic ensem-
ble, and the problem becomes a simgular value problem. If the prior error co-
variance matrix is estimated by an Ensemble, both approaches yield the same
answer, but the ArM approach is more efficient.

Details and examples of application of ArM in regional systems can be found
in Lamouroux et al. (2015), in the WP2 documents and deliverables, and of
course in the SANGOMA toolbox. The RMSpectrum approach is the one adopted
below.

Although no data assimilation will be carried out here, we will use the uni-
fied notations of data assimilation as in Ide et al. (1997). Our initial question is
whether one particular array (H,R) can be said to be “objectively satisfactory”,
and whether, given two arrays, one of them can be said to be more efficient than
the other (where H is the observational operator for that array, and R the covari-
ance matrix of the associated observational error).

In the following, we use the following paradigm: a “good” array (regardless
of its cost) is an array that can detect (and help correct) errors of a prior (pre-
existing) estimate (be it from a model, a climatology, or a null estimate if nothing
is known beforehand). The RMSpectrum approach consists of quantifying the
number of degrees of freedom of “prior” errors which can be detected by an
observational network.

Let us consider the Scaled Representer Matrix χ, expressed as follows:

χ = R−1/2HPfHTR−1/2 (2.1)

where Pf the covariance matrix of the prior (forecast) error. Hence, the Scaled
Representer Matrix χ provides a way to compare the forecast error covariance
matrix Pf in observation space with the observational error R covariance matrix
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(both can be full matrices). Comparing the eigenspectrum of χ with the eigen-
spectrum of the identity matrix allows to examine whether and under which cir-
cumstances an array will add information on top of prior knowledge, within the
observational error. The spectra of χ is obtained via the diagonalization of χ as
follow:

χ = µσµT (2.2)

where σ is a diagonal matrix containing the ordered eigenvalues λ of χ. Here,
as written above, we are interested in the eigenvalues larger than 1, correspond-
ing to detectable array modes on top of observational error. Each eigenvalue
is associated with a distinct eigenmode in observation space, contained in the
columns of µ. These modes exhibit the prior error patterns associated with each
eigenvalue in observation space. To compare two networks, one computes the
scaled representer matrix and associated spectra. The network with the largest
number of eigenvalues above 1 can be defined as the objectively best network, in
the sense that it is able to detect more of the scaled modes. However it is always
necessary to qualify those formal comparisons by looking at state-space equiv-
alents to the array modes. To that end, we compute the modal representers ρ,
which can be seen as a matrix of representers for the array modes µ. The modal
representer ρ = PfHTR−1/2µ, whose columns contain the patterns associated
with a scaled mode in the model state space, is obtained from equations (2.1)
and (2.2) and orthonormality as defined below:

µTχµ = µTR−1/2HPfHTR−1/2µ = σ (2.3)

Here, σ appears as a rotated scaled representer matrix in the new basis defined
by µT .

2.2 Implementation

Computing χ requires the knowledge of Pf , R, and H. In theory, Pf has a
very large number of entries (= number of state variables). For computational
purposes, it is possible to select a reduced number of entries for Pf (reduced
ranked approach). To avoid manipulating too large data, χ is computed following
three steps: First, we directly compute HPfHT instead of Pf , which is too costly
to determine and too heavy to store. Then, we compute R−1/2, and finally χ.
Because the matrix of modal representers ρ = PfHTR−1/2µ is also costly to
compute, we select an arbitrary number of modes that we wish to examine.

2.3 Example

In this example we consider a single-variable 2D model with a prior error covari-
ance matrix Pf , and two observational networks: one triplet in the North-South
(N-S) direction and the other triplet in the East-West (E-W) direction, with an error
covariance matrix R that is diagonal and identical for both networks. Figure 2.1a
shows the standard deviation of the prior error at the time and location of the two

6 The RMSpectrum/ArM approach
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triplets, and Figure 2.1b shows the spatial correlation of prior errors. Whereas
Figure 2.1a shows no apparent difference between both networks, Figure 2.1b
shows that the error correlation scales are larger in the E-W direction. This di-
rectly affects the performances of the two networks, and translates into distinct
scaled Representer Matrix Spectra (Figure 2.1c). According to Figure 2.1c, the
N-S triplet is able to detect 3 degrees of freedom (3 eigenvalues higher than 1)
whereas the E-W triplet (redundantly) constrains only 1 degree of freedom. This
interpretation is confirmed by the associated three modal representers of each
network (not shown), where modal representers 2 and 3 bring fresh information
with respect to mode 1 in the case of the N-S network but not in the case of E-W
network.

This simple example illustrates how the RMSpectrum approach allows to dis-
criminate, in terms of detection and potential control of model state error struc-
tures, two networks with equal cost and seemingly equivalent return.

Figure 2.1: (a) Model sea level error standard deviation. Two observation net-
works are plotted: E-W network in black, and N-S network in green. The central
point belongs to both. (b) Correlation in sea level error between the central point
and the rest of the domain. (c) Scaled Representer Matrix Spectra of E-W (blue
line) and N-S networks (red line). The green line is the spectrum of the identity
matrix, equal to 1

Array analysis 7

http://www.ulg.ac.be/
http://www.data-assimilation.net/


Deliverable 5.8

Chapter 3

The tr(HK) approach

3.1 Method

The tr(HK) approach consists of quantifying the sensitivity of an ensemble to
observations. In other words, how a given assimilation system uses the observa-
tions to “pull” the forecast signal from the background. This sensitivity is repre-
sented by the HK matrix, which compares the forecast error covariance matrix
Pf (given by the stochastic ensemble) with the observational error covariance
matrix R. The HK matrix is obtained using the Ensemble Kalman filter (Evensen,
2003) assimilation method, assuming a Gaussian distribution. It is expressed as
follows:

xa = xf + K(y −Hxf ), (3.1)

with K = PfHT (HPfHT + R)−1 (3.2)

where xa represents the assimilated state vector, xf the background vector (sim-
ulated in the ensemble), y the observations, H the observational operator, Pf the
covariance matrix of the forecast error, and R the covariance matrix of the obser-
vational error. Hence, the Kalman gain K weights the modifications brought by
the observations to modify the background vector xf , by comparing the forecast
error Pf with the observational error R. Included between 0 and 1, K increases
with the amount of observation used to alter the background vector, that is to say,
when the covariance matrix of observational error R is relatively smaller than the
covariance matrix of the forecast error Pf .

The gain in information brought by the observations is quantified via the com-
putation of tr(HK), which is the sum of the singular values of the HK matrix.
Hence, tr(HK) describes the number of useful, independent quantities in the
observations (= degrees of freedom for signal) that are used to reduce the un-
certainty of xf , by quantifying how many degrees of freedom the observations
are able to detect in Pf . In other words, it evaluates which observational network
detects most degree of freedom in the background vector xf .

8 The tr(HK) approach
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3.2 Implementation

As it was the case for the RMSpectrum/ArM approach, computing tr(HK) re-
quires the knowledge of Pf , R, and H. In this sense, the two implementations
are very efficient with most Sangoma methods. Here again, we use a reduced
ranked approach for Pf . We derive Pf from the 96-member ensemble described
below and in Candille et al. (2015). In this example, Pf has therefore 96 entries.
H is given by the observations, and R is chosen arbitrarily. To compute tr(HK),
we decompose Pf such as:

Pf = SfSf T , (3.3)

with Sf
(i) = (xf (i) − xf )(m− 1)−1/2 (3.4)

where i corresponds to the individual ensemble members, and m to the total
number of ensemble members. We can then rewrite K such as:

K = Sf [I + Γ]−1(HSf )
T
R−1 (3.5)

with Γ = (HSf )
T
R−1HSf = UΛUT (3.6)

Therefore, HK can be expressed as:

HK = HSf [I + Γ]−1(HSf )
T
R−1 (3.7)

and tr(HK) as:

tr(HK) = tr[(I + Λ)−1Λ] = Σ(λk)(1 + λk)−1, (3.8)

with λk = singular values of Γ

3.3 Data

The ensemble (Candille et al. 2015) is performed with the North Atlantic DRAKKAR
configuration of NEMO version 3.4 (called NATL025) from January 1, 2005 to
June 30, 2006. The horizontal resolution is 1/4◦, which is considered eddy-
permitting in the mid-latitudes. The forcing fluxes are calculated through bulk
formulations using the ERA40 atmospheric forcing fields. The ensemble is built
by introducing stochastic perturbations in the equation of state (Brankart 2013) af-
ter performing a single, non-perturbed integration from Levitus (1998) to January
1, 2005 to spin up the model state. Then, a 96-member ensemble of perturbed
simulations is run for 6 months with the Brankart (2013) stochastic formulation,
which is designed to spread mostly over areas with strong gradients and where
the equation of state is strongly nonlinear such as in the Gulf Stream (region A
in Figure 3.1). We thus expect an impact on the mesoscale circulation that is
observed by altimetric data. Starting July 1, 2005, the ensemble is updated by a
square root algorithm based on the SEEK (Singular Evolutive Extended Kalman)
filter (Brasseur and Verron, 2006) for 12 months, assimilating altimetric data from
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JASON-1 and ENVISAT. For this purpose, the compatibility between the ensem-
ble and the observational error R for both satellites has been validated for R = 10
cm. This observational error standard deviation was tuned in the work of Candille
et al. (2015) to optimize ensemble assimilation of altimetric observations. It is
therefore important to keep in mind that this ensemble shows a spread mostly
in the Gulf Stream region, and that its compatibility with observational errors has
only been validated for SSH, with an error of 10 cm. It is beyond the scope of this
study to assess the compatibility between the ensemble and the observational
error for other values or variables.

To illustrate this ensemble, local time evolutions of the 96-member ensem-
ble are shown in Figure 3.1, for 18 months (6 free run months and 12 assimila-
tion months), in two different regions: Region A (68,5W; 35.5N) and B (38.75W;
45.5N). In the free run ensemble (cyan curve), the ensemble spread is larger and
its saturation faster in the Region A, as compared to Region B. In the assimilated
ensemble (green curves), the ensemble spread is reduced in both regions as
compared to the free run ensemble.

Figure 3.1: SSH time series of the ensemble (free run, forecast and assimilated)
at two locations.

To illustrate the spatial representation of the ensemble, Figure 3.2 shows the
ensemble mean (a-c) and ensemble standard deviation (d-f) of SSH, sea surface
temperature (SST), and sea surface salinity (SSS), simulated in the free run en-
semble for June 14, 2005. Figure 3.3 is identical to Figure 3.2 for June 14, 2006
but for the assimilated ensemble. According to Figure 3.2 (d-f), the ensemble
spread in the free run ensemble is larger over the Gulf Stream for SSH (reaching
0.4 m in the southwest part), over the Gulf Stream, Labrador Current, and Den-
mark Straight for SST (reaching 1.8 ◦C in the northern side of the Gulf Stream),
and over the Gulf Stream, Labrador Current, Denmark Straight, and the mouth
of the Amazon and Mississippi rivers for SSS (reaching 1.25 psu in the Ama-
zon mouth). As compared to the free run ensemble (Figure 3.2), the assimilated
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Figure 3.2: SSH, SST, and SSS as simulated in the free run ensemble mean (a-c)
and as the ensemble standard deviation (d-f) for June, 14, 2005.

Figure 3.3: Same as Figure 3.2 in the assimilated ensemble for June, 14, 2006.
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ensemble (Figure 3.3) is slightly more saline in the northern North Atlantic, and
generally shows a smaller standard deviation, especially for SSH.

We evaluate four observational products. Along-track altimetric data (SSH)
are taken from two satellites provided by AVISO-CNES: JASON-1 and ENVISAT.
The JASON-1 mission has a 10-day cycle over 350 km inter-track distance at
the equator, and the ENVISAT mission has a 35-day cycle over 80 km inter-track
distance at the equator. Data for SST and SSS are taken from the ARGO profiles
provided by the UK-MetOffice in addition to ship tracks (hereafter “ARGO”). The
ARGO profiles are taken from an array of 3200 free-drifting profiling floats that
measure the temperature and salinity of the upper 2000 meters of the ocean.
They provide 100,000 temperature/salinity profiles and velocity measurements
per year, distributed over the global oceans at an average 3-degree spacing. The
floats cycle to 2000 meters depth every 10 days. We estimate the observational
error (measurement and representativeness) associated with these observations
to be comprised between 3 and 10 cm for SSH, 0.5 and 1 ◦C for the temperature
profiles, and 0.1 and 0.2 psu for the salinity profiles. We do not account for the
correlations of observational errors across the temperature and salinity profiles.
We estimate a maximal observational window of 10 days around the date of in-
terest, as we consider that the data recorded more than 5 days after the real date
does not represent this date anymore.

To illustrate the observational space, Figure 3.4 is identical to Figure 3.2 but
only shows location where data is observed, using a 10-day observational win-
dow from June, 9, 2005 to June, 19, 2005. Over this 10-day period, both satellite
products show along-track data over the full domain, except north of 60N for
JASON-1. In addition, JASON-1 shows a higher spatial resolution (Figure 3.4a)
than ENVISAT (Figure 3.4b) because whereas JASON-1 has completed a full cy-
cle in 10 days, this is not the case for ENVISAT, which needs 35 days to completes
a full cycle. The ARGO surface data on the other hand shows isolated measure-
ments (2135 measurements total including 1500 ARGO profiles for this 10-day
window) located evenly across the domain, with a lack of measurements around
the 10-20N band. Repeating the analysis using a 1-day observational window for
June, 14, 2005 (not shown) shows that a lot of information is lost when reducing
the observational window. We will therefore use a 10-day observational window
for the remaining of the study.

12 The tr(HK) approach

http://www.ulg.ac.be/
http://www.data-assimilation.net/


Deliverable 5.8

Figure 3.4: Same as Figure 3.2 but on the observational space, using a 10-day
observational window from June 9, 2005 to June 19, 2005.
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Chapter 4

Results

Because the Candillet et al. ensemble was not tested for its compatibility with
all four observations evaluated here, we rather evaluate our results based on
the sensitivity of tr(HK) to divers parameters instead of providing quantitative
conclusions on the observational networks.

4.1 Performance of assimilation system

First, we evaluate the performance of the assimilation system by computing tr(HK)
from the free run ensemble. Figure 4.1 evaluates the potential impact of assimi-
lating SSH from JASON-1 (a), SSH from ENVISAT (d), temperature profiles from
ARGO (b), and salinity profiles from ARGO (c), in the Candille et al. free run
ensemble, using a 10-day observational window from June 9, 2005 to June 19,
2005. We use an observational error R of 3 cm for SSH, 0.5 ◦C for the tem-
perature profiles, and 0.1 psu for the salinity profiles. According to Figure 4.1,
tr(HK) is higher over the Gulf Stream in all four cases, and additionally over the
tropical Atlantic for ARGO. This indicates that in these regions, the forecast error
(Pf ) is relatively larger than the observational error R, and that consequently,
the assimilation system acts to strongly alter the background vector xf (= en-
semble mean) with observations. We would like to recall at this point that the
ensemble has not been validated for the assimilation of temperature and salinity
profiles, and that consequently, Figures 6 (b-c) should be interpreted with care.
Comparing Figure 4.1a with Figure 4.1d, we find that over this time period, both
satellites bring a similar amount information to the ensemble, although the gain
is spatially more homogeneous with JASON-1 than with ENVISAT, due its higher
spatial resolution over this time period (see also Figure 3.2). Comparing Fig-
ure 4.1 (a and d) with Figure 4.1 (b-c), we find that although the satellite and in
situ measurements bring most information over the Gulf Stream, the information
brought by in situ measurements are more localized and more pronounced than
the information brought by the satellites. Note also that ARGO brings additional
information over the tropical Atlantic, but none north of 50N. We conclude that
for the ensemble, time period, and observational errors chosen in this example,
assimilating either of the four observational networks will improve the background
vector over the Gulf Stream, extending over a more or less large area, depending
on the observational network chosen (larger area but weaker signal with satel-
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lites). The comparison of Figure 3.2 (d-f) with Figure 4.1 indicates that tr(HK)
increases with the ensemble standard deviation ( Pf ). This is not the case for the
high values of tr(HK) computed over the tropical Atlantic for temperature (Fig-
ure 3.4b) and salinity (Figure 3.4c), which instead, seem to result from a larger
observational (ARGO) coverage (Figure 3.3).

Figure 4.1: tr(HK) computed from the free run ensemble (June 14, 2005) and
SSH from JASON-1 (a), SSH from ENVISAT (b), temperature profiles from ARGO
(c), and salinity profiles from ARGO (d), using a 10-day observational window
from June 9, 2005 to June 19, 2005.

Repeating the analyze with a larger observational error R of 10 cm for SSH,
1 ◦C for temperature, and 0.2 psu for salinity (not shown), we find that tr(HK) is
roughly halved as compared to Figure 4.1. This indicates that the observational
error R is a key factor influencing tr(HK).

Figure 4.2a shows the potential impact of assimilating altimetric data from
JASON-1 and ENVISAT at the same time. According to Figure 4.2a, assimilating
both satellites roughly doubles the gain brought by observations. Figure 4.2b (c)
shows the impact of assimilating altimetric data from JASON-1, ENVISAT and
temperature (salinity) profiles from ARGO at the same time. Here, we find that
tr(HK) seems dominated by ARGO. However, because we know that the obser-
vational errors for temperature and salinity have not been optimized, we cannot
conclude at this point, that ARGO brings more information than satellites. In ad-
dition, we also find that increasing the observational error R of ARGO increases
the amount of information brought by the satellites (not shown). Therefore, we
conclude that testing two observational networks in the Candille et al. ensemble
via tr(HK) cannot lead to a quantitative conclusion as long as the observational
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errors R are not optimized for all the observations prior to the analysis, because
we find that tr(HK) is very sensitive to R.

Figure 4.2: tr(HK) computed from the freen run ensemble (June 14, 2005) and
SSH from JASON-1 and ENVISAT (a), SSH from JASON-1 and ENVISAT and
temperature profiles from ARGO (b), and SSH from JASON-1 and ENVISAT and
salinity profiles from ARGO (c), using a 10-day observational window from June
9, 2005 to June 19, 2005.

4.2 Validation of assimilation system

We validate the assimilation system by computing tr(HK) on the assimilated en-
semble. Figure 4.3 evaluates the impact of potentially assimilating temperature
(a) and salinity profiles from ARGO in the Candille et al. assimilated ensemble,
using a 10-day observational window from June 9, 2006 to June 19, 2006. In
other words, what would have happened if we had a third or fourth observation?
As for Figure 4.1, we use a relatively small observational error R. According to
Figure 4.3, assimilating the temperature or salinity profiles from ARGO, in addition
to the altimetric data from JASON-1 and ENVISAT, only adds sporadic informa-
tion along the Gulf Stream and tropical Atlantic. The lower values of tr(HK) in
Figure 4.3 (a-b) as compared to Figure 4.1 (b-c) indicate that less information is
used from ARGO to modify the assimilated ensemble than to modify the free run
ensemble. This suggests, in agreement with Figures 3.2 and 3.3, that the assimi-
lated ensemble has a smaller forecast error than the free run ensemble, and that
therefore, the assimilation system correctly reduces the forecast error, bringing
the ensemble closer to the true state vector. Assimilating another observation
at this point would only slightly improve the ensemble. This result also indicates
that assimilated SSH improves the simulated temperature and salinity, which is
encouraging.

16 Results
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Figure 4.3: tr(HK) computed from the assimilated ensemble (June 14, 2006)
and the temperature profiles from ARGO (a), and salinity profiles from ARGO (b),
using a 10-day observational window from June, 9, 2006 to June, 19, 2006.
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Chapter 5

Conclusion

Using the tr(HK) method, inspired from the Sangoma-tool ArM, itself a stochas-
tic implementation of the RMSpectrum method (Le Hénaff et al. 2009), we show
that the quantitative gain of information brought by an observational network de-
pends mostly on 1) the observational error (the gain roughly doubles when ob-
servational error is halved) and 2) the forecast error (the gain increases with the
forecast error). Qualitatively, the gain depends mostly on the location of the ob-
servations, and by extension, on the location of the forecast error: In our case,
a lot of information is gained from observations over the Gulf Stream, because
this is where the forecast error is largest. In our example, we conclude that the
eddy-permitting model directly affects the performance of all four networks (satel-
lite and in situ measurements), as a relatively higher tr(HK) are found over the
eddy-rich areas.

Our results also show that the gain of information brought by the satellite data
is generally more numerous and spatially more homogeneous than ARGO, but
that ARGO brings additional information over the tropical Atlantic. We also show
that assimilating two satellites brings quantitatively twice as much information as
assimilating only one satellite, and that assimilating ARGO data in addition to the
two satellites does not add a lot more information than assimilating both satellite
data. We would like to recall that while the quantitative results on SSH can be
estimated reliable, this is not the case for the temperature and salinity profiles.
Hence, the quantitative comparison between satellite and ARGO data should be
taken with care, as tr(HK) depends heavily on the observational error, which
has been chosen arbitrarily and was not validated for temperature and salinity
in the framework of our ensemble. In addition, we recall that the ensemble is
especially designed to produce uncertainty in the SSH over the Gulf Stream, and
not in other variables or regions.

Overall, we conclude that the tr(HK) method has a relatively low computa-
tional cost, and is simple to implement and interpret. Although it shows promises,
additional tests should be carried out to validate the ensemble with other obser-
vations than SSH and to better constrain the value of observational errors, prior
drawing quantitative conclusions.
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Chapter 6

References

Brankart J.-M., 2013. Impact of uncertainties in the horizontal density gradient
upon low resolution global ocean modelling. it Ocean Modelling, 66, 64–76.

Brasseur P. and Verron J., 2006. The SEEK filter method for data assimilation in
oceanography: a synthesis, Ocean Dynamics, 56, 650-661.

Candille G., Brankart J.-M., and Brasseur P., 2015. Assessment of an ensemble
system that assimilates Jason-1/Envisat altimeter data in a probabilistic model of
the North Atlantic ocean circulation. Ocean Science, 11, 425-438.

Evensen G., 2003. The ensemble Kalman filter: Theoretical formulation and
practical implementation. Ocean Dynamics, 53, 343-367.

Kalman R.E., 1960. A New Approach to Linear Filtering and Prediction Problems.
Journal of Basic Engineering, 82.

Lamouroux, J., G. Charria, P. De Mey, S. Raynaud, C. Heyraud, P. Craneguy, F.
Dumas, M. Le Hénaff, 2015: Assessment of RECOPESCA network contribution
for the monitoring of 3D coastal model errors in the Bay of Biscay and the English
Channel. Submitted to Ocean Dynamics.

Le Hénaff M., De Mey P., and Marsaleix P., 2009. Assessment of observa-
tional networks with the Representer Matrix Spectra method: application to a
3D coastal model of the Bay of Biscay. Ocean Dynamics, 59, 3-20.

Levitus S. et al., 1998. World Ocean Database. NOAA Atlas NESDID 18, US
Government Printing Office, Washington DC.

Array analysis 19

http://www.ulg.ac.be/
http://www.data-assimilation.net/

	1 Introduction
	2 The RMSpectrum/ArM approach
	2.1 Method
	2.2 Implementation
	2.3 Example

	3 The tr(HK) approach
	3.1 Method
	3.2 Implementation
	3.3 Data

	4 Results
	4.1 Performance of assimilation system
	4.2 Validation of assimilation system

	5 Conclusion
	6 References

