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Chapter 1

Introduction

The choice of parameter values is crucial in the course of sea ice model develop-
ments and for the success of operational Arctic Ocean forecasts and reanalysis
products. Similarly to other areas of geoscience, manual tuning of parameters is
impractical in sea-ice models as well, making urgent the use Automatic methods
for parameter calibration.

The problem of estimating the parameter of a geophysical model is well known
in the literature, and it has been treated in the framework of both the Kalman
filter-like and variational assimilation (e.g. Jazwinski, 1970; Bennett et al., 1996;
Navon, 1997), based on a technique called the state augmentation method (Jazwin-
ski, 1970). Formal conditions for an observing network and data assimilation
to provide reliable estimate of the model parameters have been studied in con-
nection with the concept of observability (Cohn and Dee, 1988; Navon, 1997).
Successful parameter estimation has been also obtained in the context of sim-
ple prototypes of nonlinear dynamics with the EnKF (Anderson, 2001; Aksoy et
al., 2006; Yang and Delsole, 2009; Koyama and Watanabe, 2010) and with the
maximum likelihood ensemble filter (Zupanski and Zupanski, 2006; Zupanski et
al., 2007; Orescanin et al., 2009). Annan and Hargraves (2004) have proposed a
method, in the framework of the EnKF, to estimate the parameters of the Lorenz
(1963) model and have then successfully applied the same approach to an in-
termediate complexity Earth system model (Annan et al., 2005). Efficient state
and parameter estimation using the EKF has been demonstrated in the context
of a coupled ocean-atmosphere model used for prediction of El Nino-Southern
Oscillation (Kondrashov et al., 2008).

In the present work, we have dealt with the problem of estimating physical
parameters related with the sea-ice, using observations of sea-ice quantities.
The issue is of great relevance given the large prediction error affecting coupled
ocean-sea-ice model in Arctic area. The presence of new observations suppliers
in recent years, including satellite-based instruments (see e.g. ICESat database),
have motivated a stream of research aimed at their use to estimate sensitive sea-
ice parameter. The present deliverable DL5.7 goes along this line of scope.

This reports describes the choice of method, the steps undergone and the
results obtained at NERSC in the framework of SANGOMA. Taking advantage
of the pre-existing Ensemble Kalman filter infrastructure at NERSC, the param-
eter estimation has been done using the EnKF in the augmented formulation.
The standard sequential EnKF has been adopted at a first stage followed by the
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Asynchronous EnKF later on, which allows for a compact way to assimilate ob-
servations distributed within a specified time window.

4 Introduction

http://www.nersc.no/
http://www.data-assimilation.net/


Deliverable 5.7

Chapter 2

Methodology

Two different EnKF strategies have been used in different stages of the work.
First the sequential EnKF (Evensen, 2003) in its augmented formulation has been
used to estimate three sea-ice parameters (Massonnet et al., 2014). Then the
asynchronous EnKF (Sakov et al, 2010) has been used for the same purposes,
but the observations are now assimilated once at all at a single analysis time. The
formulation of the parameter estimation problem also differs in the two stages.
While global scalar quantities were estimated in the first case, the parameter
spatial dependency was also quantified in the second case.

We have worked under a twin experiments setup, meaning that a run of the
model is used to mimic the unknown true trajectory, in this case the parameters,
we intend to estimate. Working with real observations will be the natural follow-on
of the present exercise.
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Chapter 3

Results

3.1 Case 1 - Sequential EnKF

The work has been done in collaboration with F. Massonnet at Université Catholique
de Louvain la Neuve.

Here a method for calibration of parameters based on the ensemble Kalman
filter is implemented, tested and validated in the ocean-sea ice model NEMO-
LIM3. Three dynamic parameters are calibrated: the ice strength parameter P ∗,
the ocean-sea ice drag parameter Cw, and the atmosphere-sea ice drag param-
eter Ca. In twin, perfect-model experiments, the default parameter values are
retrieved within 1 year of simulation. Using 2007-2012 real sea ice drift data, the
calibration of the ice strength parameter P ∗ and the oceanic drag parameter Cw

improves clearly the Arctic sea ice drift properties. It is found that the estimation
of the atmospheric drag Ca is not necessary if P ∗ and Cw are already estimated.
The large reduction in the sea ice speed bias with calibrated parameters comes
with a slight overestimation of the winter sea ice areal export through Fram Strait
and a slight improvement in the sea ice thickness distribution. Overall, the esti-
mation of parameters with the ensemble Kalman filter represents an encouraging
alternative to manual tuning for ocean-sea ice models.

Complete results and the description of the approach are given in Massonnet
et al., 2014.

3.2 Case 2 - Asynchronous EnKF (AEnKF)

3.2.1 Model sensitivity to sea-ice parameters

Figure 3.1 shows the empirical distributions of P ∗, Cw, and Ca used to initialize
the ensemble members. We have intentionally worked with a uniform distribution
for P ∗, and Gaussian for the two drag coefficients. This choice reflects our as-
sumption on the uncertainty associated with the parameters. The red dots on the
x-axis display the values used for each ensemble member. Nens = 30 ensemble
members are initialized in this first stage.

Figure 3.2 shows the ensemble mean and spread as a function of time, for
three different experiments: (1), with only P ∗ being perturbed, (2), with the two
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Figure 3.1: From top to bottom the empirical distributions used to sample P ∗,
Ca, and Cw respectively. The red dots on the x-axis depict the values of the
parameters used in the experiments, while the green vertical dot lines the value
used in the twin experiments for reference.
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drag coefficients simultaneously perturbed and (3) with the two Cs and P ∗ all per-
turbed. The figure illustrates the effect on the model sensitivity to the parameters
under scrutiny. Results indicate that:

• The perturbations do not incur a significant bias in the ensemble mean (as
one may have expected from the model nonlinearities).

• P ∗ drives the ensemble spread in the sea-ice concentration (Fice) and
thickness (Hice)

• The drag coefficients both act mainly on the sea-ice speed as expected.
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Figure 3.2: Ensemble Mean (top line) and Spread (bottom line) as a function of
time for (from left to right) Fice, Hice, Uice and Vice. Days are counted from the
1st Jan.

In the P3 experiment, the effect is further highlighted in Fig. 3.3 to 3.6 that
show the spatial patterns of the ensemble spread along 1-year of simulation at
a display frequency of 3 months. The spread of ice concentrations is mostly
confined to the ice edge (Fig. 3.3) while the spread of ice thickness gradually
accumulates in the Beaufort Gyre (Fig. 3.4) and the spead of ice drift seems
to have maximum amplitude along the main features of the circulation (Beaufort
Gyre and Transpolar Drift, Figs. 3.5 and 3.6). These are the features that are
expected from traditional manual tuning.

The sensitivity analysis reported in Figures 3.2 - 3.6 suggests that, when
observing the sea-ice thickness, P ∗ has the potential to be better estimated than
the drag coefficients. Indeed, perturbing P ∗ induces a larger spread in the sea-ice
thickness, manifesting the correlation between the two quantities that is exploited
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Figure 3.3: Ensemble Spread in the sea-ice concentration (Fice) at day (by row)
90, 180, 270 and 360. P3 experiment.

Figure 3.4: Same as Figure 3.3 but for sea-ice tickness (Hice).
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Figure 3.5: Same as Figure 3.3 but for sea-ice U-velocity (Uice).

Figure 3.6: Same as Figure 3.3 but for sea-ice V-velocity (Vice).
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Table 3.1: Forecast and Analysis Error in P ∗

1990 1991 1992 1993 1994 1995
Forecast Error (N/m2) 5.9e+03 5.9e+03 5.9e+03 5.9e+03 5.9e+03 5.9e+03
Analysis Error (N/m2) 5.4e+03 5.2e+03 5.0e+03 5.2e+03 5.4e+03 5.2e+03

at the analysis steps when observations of Hice are used to calibrate P ∗. This
conjecture is confirmed by the assimilation experiments that follow.

3.2.2 AEnKF with sea-ice thickness observations

As done in Section 3.1, we aim here at estimating dynamic parameters of the
sea-ice, namely the sea-ice strength, P ∗, and the two drag coefficients Cw, and
Ca. Numerical experiments, under a perfect twin-experiment scenario have been
carried out. The simulations span the period from 1989 to 1996, and parameter
estimation is performed starting from 1990.

One key question of the SANGOMA WP5 is to evaluate the impact of new sea-
ice observations. To this end, we focus here on the ability of sea-ice thickness
observations to calibrate the aforementioned parameters. Synthetic observations
of sea-ice thickness are simulated using by sampling one reference free model
trajectory at the same geographical locations as the real ICESat observations.
The latter are taken in two sampling campaigns per year in October-November
and in February-March: in the experiments this situation is mimicked by taking
the simulated observations at November and October the 1st respectively. The
simulated observational error variance for the hice thickness is set to 7.84× 10−2

(Zygmuntowska et et al, 2014). An ensemble of 24 members is used, with an mul-
tiplicative inflation of 1% and a localization via a Gaspari-Cohn modulating func-
tion with spatial scale equal to 800 Km. The analysis is performed only once using
the AEnKF, but observations are collected twice a year (at March and November)
during the period from January 1990 to the analysis time.

Two types of experiments are considered: (1) estimation of the sea-ice strength,
P ∗, alone and, (2) estimation of the three parameters simultaneously. Figure 3.7
shows the analysis of P ∗ at November 1990 and 1995. Each ensemble members
is run using a different global value of P ∗, but at the analysis times the spatial
dependency of the parameter is also retrieved and is represented by the color
shadows in the figure. The ability of the assimilation to reconstruct a geograph-
ical pattern for P ∗ is apparent and the error is reduced in the largest areas of
the domain: one of such an area is given in shadow grey in the left panel (North
of the Canadian Archipelago and Greenland). The latter is computed as the dif-
ference between the spatial average of the analyzed P ∗ and the reference value
used as truth. Table 3.1 contains the forecast and analysis parametric error each
year (November) in the period 1990 and 1995: it shows how the AEnKF leads
to reducing the latter consistently. Nevertheless Fig. 3.7 also reveals that the
assimilation returns nonphysical (≤ 0) values for P ∗ (Laptev Sea, see the red
shadow area in the right panel): this problem is currently under scrutiny. It may
due to different implementation aspects of the assimilation such as the ensemble
size, the inflation/localization setup, the number of observations among other.

The experiments of type (2), where the three parameters are simultaneously
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Figure 3.7: P ∗ analysis field at November 1990 and 1995 using AEnKF

estimated have not given satisfactorily results. They indeed confirm what found in
Massonnet et al., 2014, on the difficulty of calibrating the drags based on sea-ice
thickness measurements as already anticipated when looking at the sensitivity
analysis in the previous Section.

Fig. 3.8 shows the analysis field for P ∗, CW and Ca at November 1990 (top
panels) and 1995 (bottom panels). As remarked in Fig. 3.7 the assimilation
method and setup still require further optimization in view of the appearance of
areas with nonphysical values (≤ 0). Moreover the field for the water drag coef-
ficient, CW , is also displaying a clear nonphysical discontinuity which is a further
indication of imbalances created at the analysis step.
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Figure 3.8: P ∗, CW and Ca analysis fields at November 1990 and 1995 using
AEnKF

Result of the data assimilation experiment aiming to estimate Lagrangian sea ice parameters 13

http://www.nersc.no/
http://www.data-assimilation.net/


Deliverable 5.7

Chapter 4

Conclusion

SANGOMA WP5 has studied the use of sea-ice observations to calibrate dynam-
ics sea-ice model parameters. The efforts were motivated by two combined fac-
tors, the known large errors of sea-ice models mainly originated by parameters
mispecification and the rise of new observations (mainly from remote sensing)
that offer a more homogeneous and consistent picture of the Arctic. The use
of advanced data assimilation methods, at the core of SANGOMA’s expertise,
makes it possible to merge the model with observations and to address the ques-
tion on how much observations can help reducing the parameter uncertainty.

The results depict a promising picture in that parameter error is indeed re-
duced is, as expected, the model has a marked sensitivity to the parameters
intended to be estimated. This situation occurs, for instance, when using sea-
ice thickness observations to calibrate the sea-ice strength. On the contrary, the
same sea-ice thickness measurements are not useful to constraint error in the
sea-ice strength and, overall the impact of data assimilation on the associated er-
ror seems only minor. Nevertheless further work is required in order to fix several
implementation aspects of the data assimilation method. These issues are seen
as the main causes behind the sporadic appearances of nonphysical values and
discontinuity in the analysis fileds, and are the object of follow-on study.

More specifically, the ice thickness measurements are becoming more sys-
tematic with ESA’s CryoSAT2 altimeter mission, which will be sustained with an-
other ESA mission Sentinel-3. As CryoSAT2 and Sentinel-3 will observe ice thick-
ness regularly and not only a few months per year, we expect that the parameter
estimation will become more stable and will be taken up for the Copernicus Arctic
MFC, which is based on the same AEnKF data assimilation system used in this
report (i.e. the TOPAZ system).
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