
Deliverable 5.6

SANGOMA: Stochastic Assimilation for the
Next Generation Ocean Model Applications

EU FP7 SPACE-2011-1 project 283580

Deliverable 5.6:
Regional model V1 analysis

Due date: 31/10/2015
Delivery date: 03/11/2015

Delivery type: Report , confidential

Luc Vandenbulcke Jean-Marie Beckers
Alexander Barth

University of Liège, BELGIUM

Peter Jan Van Leeuwen Sanita Vetra-Carvalho
University of Reading, UK

Lars Nerger
Alfred-Wegener-Institut, GERMANY

Arnold Heemink Nils van Velzen
Martin Verlaan

Delft University of Technology, NETHERLANDS

Pierre Brasseur Jean-Michel Brankart
CNRS-LEGI, FRANCE

Pierre de Mey
CNRS-LEGOS, FRANCE

Laurent Bertino
NERSC, NORWAY

2

http://www.ulg.ac.be/
http://www.data-assimilation.net/
http://www.data-assimilation.net/


Deliverable 5.6

Chapter 1

Introduction

Imperfect physical models (including imperfectly known parameters) and numer-
ical implementations, limited horizontal and vertical resolution, and errors on the
model initial condition, open-sea boundary conditions and atmospheric forcing
fields all lead to errors in hydrodynamical model forecasts.
Therefor, modern ocean forecasting systems consist of a hydrodynamic model,
and observational networks, both being fused through data assimilation methods
in order to provide the best ocean estimates and forecasts. Thanks to progress in
modelling and data assimilation, ever-increasing computational power, and more
and better designed observational instruments, the quality of these forecasting
systems has improved steadily over the last decades.

Recently, much efforts have been targetted at better specifying the uncertainty
affecting model forecasts, leading to more accurate data assimilation updates.
Building on the theory of the Ensemble Kalman Filter (EnKF) [Evensen, 2003],
these efforts often rely on stochastic modelling of uncertainty sources in the
models. Recent examples are gives in Lamouroux [2006], Vandenbulcke et al.
[2008], Mourre et al. [2008], Counillon et al. [2009], Lellouche et al. [2013], Quat-
trocchi et al. [2014], Ayoub et al. [2015]; operational applications are shown in
Sakov et al. [2012], Vandenbulcke and Barth [2015]. Other research efforts in
the field of data assimilation are aiming at new data assimilation methods (e.g.
non-Gaussian methods), harmonization of tools and benchmarks, and the assim-
ilation of new types of observations.

Forecasting of currents (and waves) in regional and coastal models is important
for coastal management and security. One relatively new type of observartion,
that can help improving current forecasts, are observations by high-frequency
(HF) radars. Radar remotely sensed current observations have been devel-
opped for about 30 years, and their inclusion in data assimilative systems has
started about 15 years ago. Sometimes, when large local variability is present
(mesoscale eddies, fronts etc), coastal HF radars can be the only way to provide
reliable synoptic views of the current field.

In the present paper, the impact of assimilation of HF radar observations on
model forecasts is studied. The analysis is performed in the particular case of
an ensemble of 100 models of the Ligurian Sea, with current data from 2 radar
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stations.
The members of the ensemble are obtained by perturbing 3 model parameters:
the wind forcing field, which is a prominent source of errors [Burrillo et al., 2002,
Auclair et al., 2003, Lamouroux, 2006, Jorda and De Mey, 2010, Vervatis et al.,
2015], the open-sea boundary condition, and a supplementary, stochastic term in
the momentum equation. The ensemble then serves to estimate the covariance
matrix needed to assimilate observations.
The data assimilation state vector comprises the projection of the model current
onto the radial directions towards the radar stations. Sensitivity experiments are
conducted to assess the relative performance of the data assimilation filter with
respect to various parameters (such as the length of the time window) and meth-
ods (such as the correction of only model variables, or of forcing fields as well).

Chapter 2 briefly reviews the problem of assimilating radar currents. In chap-
ter 3, the ocean model, the method for generating the ensemble and the data
assimilation tool are described, as well as the observation operator linking the
data and model vectors. In chapter 4, the impact of the velocity observations is
analyzed in space and in time. Their impact on other (non-observed) variables is
assessed as well. Some conclusions are given in section 5.

4 Introduction
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Chapter 2

History of assimilation of HF
radar data

Current observations by radar stations are available for about 30 years. They
provide synoptic estimates of surface currents over a relatively large area, hence
they are very usefull to constrain regional or coastal models. An initial paper
by Barrick et al (1977, 1978) already presented assimilation of radar currents in
models. However, since, the quality of the observations has improved, as well as
the models and data assimilation schemes. Let’s mention:

• Verlaan [1998] assimilated current measurements by 2 HF radar stations,
as well as water levels, into a regional model of the coast of Holland, using
the reduced-rank Kalman filter variant called RRSQRT. The DA was shown
to improve the model, although the author reckons that water level mea-
surement probably have a larger impact. Retrospectively, the quality of the
radar measurements may have been the cause for that (Verlaan, private
communication).

• Lewis et al. [1998] use nudging by adding a pseudo-layer above the surface
and impose a shear stress on top of the one generated by the wind. At the
time, they also noted that the radar data accuracy was rather poor.

• Breivik and Saetra [2001]: During the EuroROSE project, they performed
operational data assimilation in a nested model along the Norwegian coast.
Data is discarded when the velocity difference between model and obser-
vations is more than 0.5m/s, or the direction difference is more than 45°.
The analysis is smoothed with a second-order Shapiro filter. Some scatter
plots of the kinetic energy in analysis versus observations (1 plot per lead
time) are presented, including the linear regression line.

• Oke et al. [2002] assimilates high-frequency radar observations off the Ore-
gon coast. The data does not undergo a pre-selection (such as the one
above), but the correction is applied in multiple steps, in order to avoid
shocks in the model.

• Kurapov et al. [2003] presents a forecasting system off Oregon as well,
which uses radar data to improve a model (including tides). Large uncer-
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tainty enters the model solution through the open-sea boundary conditions;
the radar currents allow to reduce model errors (compared to independant
acoustic Dopler profiler data).

• Wilkin et al. [2005] assimilates radar data in a, operational forecasting sys-
tem based on ROMS, off the New Jersey coast

• Kaplan and Lekien [2007] produce smooth two-dimensional fields from radar-
based observations, though noting that assimilation of radial currents avoids
the additional step and errors of creating the vector currents

• Chao et al. [2009] run a ROMS model nested in the Monterey bay. Avail-
able observations include 4 radars with a coverage of about 200km and
with resolution of 1 to 3km, but this data is used for validation only. The
hourly radar data is filtered with a 33-hour filter to remove tidal currents (di-
urnal and semi-diurnal time-scales). Regarding predictability, they note that
glider velocity rms errors double in 48h, and conclude that it is necessary
to assimilate current data.

• Shulman and Paduan [2009] present, in the Monterey bay experiment,
1/ assimilation of low-pass filtered (33 hours) radar data into a non-tidal
model, improving comparison with moored current observations
2/ assimilation of unfiltered radar data into a model with tides yields the
same level of improvement
Thus, unfiltered radar data can be assimilated as long as the model repre-
sents the observed time-scales too.

• Hoteit et al. [2009] use HF radar data with a 4DVar filter to improve initial
condition, open boundary conditions and atmospheric forcings of a MITgcm
implementation along the coast of San Diego.

• Barth et al. [2010] use an ensemble Kalman filter to assimilate HF radar
data and correct tides. The ensemble members are perturbed using the
WCE algorithm.

• Zhang et al. [2010] use a 4DVar filter to improve a ROMS model of the New
York Bight Different datasets are assimilated. It is noteworthy that HFradar
data degrades sub-surface temperature.

• Barth et al. [2011] implement an EnKF to correct the wind forcing field;
multiple time instants are grouped in the state vector which is subsequently
called the estimation vector.

• Yu et al. [2012] use a 4DVar filter to assimilate radar data, in order to im-
prove the geometry of the upwelling SST front, and SSH. The state vec-
tor comprises (U,V,SSH,T,S). The error covariance is function only of the
model-observations misfit. The model error covariance is diagonal and de-
pendent on distance.

• Gopalakrishnan and Blumberg [2012] use radar data to nudge the "NY-
HOPS" 3D estuarine/coastal model of the Raritan Bay and coastal waters

6 History of assimilation of HF radar data
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off New York and New Jersey, and show improvement of the model with
respect to ADCP data.

• Supulveda et al. [2013] perform a twin-experiment using a 3DVar filter to
assimilate data off northern Chile.

• Paduan and Washburn [2013] present a review article of radar current data
utilization.

• Kurapov [2014] Assimilates sea surface height, temperature and radar data
in the presence of a river plume. Let’s note that the authors recently switched
to an ensemble-based covariance matrix.

• Mermain et al. [2014] assimilate HF radar data around Toulon with the aim
to correct wind and open sea boundary conditions, which will in turn im-
prove the model surface currents. Root mean square (rms) errors on radial
velocity and surface currents are about 0.2m/s, and improved very slightly;
when errors are larger (around 0.3m/s), the improvement is larger ( 0.1m/s).
Assimilation of radar data brings no significant changes on T-S profiles.

• Sperrevik et al. [2015] use ROMS-4DVar in an experiment off Norway, as-
similating HF-radar and CTD data. The free simulation has relatively bad
velocities (compared to drifters). Assimilating radar velocities improves the
current field. Assimilating also CTD T-S profiles does not improve surface
velocity, but improves the density field.

In general, older studies blame the radar observations for the relatively small im-
provement that data-assimilation brings to the forecasts. As with other types of
observations, over time, the assimilation schemes evolved from nudging schemes
(direct or via a pseudo-shear stress) to more elaborate schemes such as 3DVar
and 4DVar, and ensemble methods.
Recent studies usually assimilate directly the radial currents (with respect to the
radar position), or if orthogonal currents are still assimilated, the authors recom-
mended to switch to the original, radial currents in the future. Indeed, if observed
(radial) currents are interpolated on an orthogonal grid, and subsequently inter-
polated again on (another) orthogonal model grid, more interpolation errors are
to be expected.
Let’s also note that most authors recommend a 24h window to assimilate radar
data.

Regional model V1 analysis 7
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Chapter 3

System description

3.1 Hydrodynamic model and ensemble generation

The hydrodynamic model is the broadly-used ROMS model, described in detail
in Shchepetkin and McWilliams [1998, 2003, 2005].
The present implementation has 1/60° horizontal resolution and 32 vertical s lay-
ers, and covers the domain 8-11.2° longitude, and 42.5-44.5° latitude. The model
domain is shown in Fig. 3.1, as well as simulated temperature and velocity on
06/07/2010.

Open boundary conditions are obtained from the Mediterranean Forecasting Sys-
tem (MFS). Atmospheric forcing fields are from the COSMO forecasts. The model
run coincides with the Recognized Environmental Picture campaign that took
place during summer 2010 (REP’10).

The Ligurian sea is conditioned by the Liguro-Provencal Current, which is created
when the Eastern and Western Corsican Currents join North of Corsica. The re-
gion is also the siege of large mesoscale activity; as well as inertial oscillations
with a period of approximately 17 hours.

3.2 Ensemble generation

An ensemble of models is generated by perturbing the open-sea boundary condi-
tions, the wind field, and by adding a stochastic term to the momentum equation.
The wind field is perturbed by computing its Fourier transform over a certain pe-
riod, then using the Fourier modes to generate a random perturbation that has
similar spatial and temporal scales as the original wind field. The underlying as-
sumption is that wind field errors are mainly phase and amplitude errors, rather
than errors in the variability (as would be obtained with a perturbation based
on the original field EOFs). The intensity of the perturbation is chosen so that
its standard deviation is 30% of its temporal variability. The method is detailed
in Barth et al. [2011]. The open-sea boundary condition coming from the MFS
model is also perturbed following the same method, for the variables of tempera-
ture, salinity, surface elevation and velocity.

8 System description
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Figure 3.1: Model domain, and temperature and velocity forecast for 06/07/2010.
The coverage of radar observations is shown as well.

The stochastic term in the momentum equation is represented by the last term in
the right-hand side of:

du

dt
+ Ω ∧ u = − 1

ρ0
∇hp+

1

ρ0
∇ · Fu +∇h ∧ εez (3.1)

This does not create horizontal divergences or convergences, and can create
(absent or misplaced) mesoscale features in the flow.

Three test ensembles are run with the respective perturbations; the perturbation
intensities are then scaled so that the 3 kinds of perturbations generate the same
magnitude of spread. Finally, the ensemble is spun up for 1 week with all the
perturbations together, in order for the members to separate and create different
mesoscale circulation features. Hence during the subsequent actual experiment,
all members have different initial conditions and boundary conditions.

The model error covariance matrix is subsequently estimated by the ensemble
covariance matrix. For example, after the 1-week spin-up, the ensemble surface
velocity spread is about 10 cm/s. The spatial correlation is about 50km (for tem-
perature) and 10 km (for velocity). The obtained ensemble should represent the
variability at all spatial and temporal scales represented in the simulation.
The ensemble spread at the end of the spin-up is shown in Figure 3.2. The spatial
mean of the spread is 1cm for surface elevation, and 8cm.s−1 for surface velocity.
Larger values appear along the (perturbed) open boundary, but also in areas with
strong currents or eddies. The largest spread occurs at the surface, southward of
the area covered by the HF radar observations. The mean temperature spread
is 0.6°C; the plot (not shown) does not place the largest spread at the southern
boundary, but rather along the coastlines. A supplementary perturbation of the
surface heat flux may further increase the spread in the open sea.
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Figure 3.2: Ensemble spread at the end of the spinup, (a) surface elevation, (b)
velocity, (c) velocity at the southern boundary (limited to 700m depth)

10 System description
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3.3 Data

During the REP’10 experiment, HF-radar currents, satellite SST images, and
glider data were obtained. Two WERA radars were operated by the NATO Un-
dersea Research Center (NURC, now CMRE) in the Insula Palmaria and San
Rossore locations, operating at a frequency ν=12.359MHz and coupled to a
wavelength of λb=12.13m.
They provide radial current fields with an azimuthal resolution of 6 degrees. These
are smoothed in the azimuthal direction as a function of distance to the radar to
account for loss of precision at larger distances.
We average the observed currents over 1 hour. An example of radar coverage is
shown in Fig. 3.1.

3.4 Data assimilation scheme

Data assimilation is performed by the Ocean Assimilation Kit (OAK) package im-
plementing the SEEK and Ensemble Kalman Filter (EnKF) [Barth et al., 2008].
In this case, the EnKF code is used, albeit with some particular choices detailed
hereunder.

The state vector usually contains the model trajectory, i.e. the prognostic model
variables at all gridpoints, at the time observations are available. However, it
may also contain different variables (e.g. forcing variables), in which case it is
called the estimation vector [Barth et al., 2011]. In our experiment, on top of
the prognostic model variables, the estimation vector may also contain uncer-
tain (and perturbed) forcing fields such as the wind field, the initial condition, the
open boundary condition, and the stochastic error term. In theory, by assimilating
enough observations, all these forcing fields can then be optimized.

Radar observations have high temporal resolution, but the modification of model
fields by data assimilation may generate unrealistic transient features that do not
have time to dissipate if the assimilation frequency is too high. It is well known
that too frequent assimilation can degrade the forecast [Talagrand, 1972]. On the
other hand, if one wishes to correct rapid processes (e.g. the phase of inertial
oscillations), assimilating with lower frequency (e.g. a single current field per day)
is not enough, certainly if the observations are time-averaged.
We allow the estimation vector to contain multiple instances of the variables,
taken at different model time-steps. In our setup, if we define a 2-day assim-
ilation window, each member of the ensemble saves 48 1-hour-averaged out-
puts which are all assembled in the estimation vector. The filter is then closely
related to the Ensemble Kalman Smoother (EnKS, see van Leeuwen [2001]),
the 4DEnKF [Hunt et al., 2004] and the Asynchronous Ensemble Kalman Filter
(AEnKF) [Sakov et al., 2010].

As noted in section 2, it is recommended to use directly the observed, radial
currents. In our experiment, the (orthogonal) model currents are first projected
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onto the radial axis, and these radial currents are then assembled in the state
vector for data assimilation. The observation operator is described in the next
section.

Sperrevik et al. [2015] reports that introducing correlations between the u and v
components of the (orthogonal, regridded) radar observations only brings marginal
improvements to the forecasts. However, even when considering a single com-
ponent, or radial observations from a single radar, the points in the dense field of
radar velocity observations are not spatially uncorrelated.
However, in the current implementation of the EnKF, the observation error covari-
ance matrix R must be diagonal. Hence, to compensate for the missing non-
diagonal elements in R, we artificially strongly increase the representativity error
component in (the diagonal of) R:

R = Rinstrum + Rrepr (3.2)

where Rinstrum is the instrumental (measurement) error and Rrepr needs to be
determined.

In the present tests, considering a 2-day assimilation window, the estimation vec-
tor x may contain the 48 1-hourly-averaged radial velocities, the model prognostic
variables (temperature, salinity, barotropic and baroclinic velocity, and sea sur-
face elevation) at the end of the 2-day window, and also the wind forcing. During
the EnKF step, all these variables need to be loaded in memory for all the en-
semble members. When observations are available, the filter then updates all
the variables in the estimation vector; but the size of the latter in the computer
memory can be prohibitive.
Hence, in practice, the estimation vector does not contain all the other model
variables, but only the variables directly required to compute h(xf ), where h is
the observation operator and xf is the first guess of the estimation vector. Then,
the data assimilation procedure saves the local coefficients αi of the linear com-
bination of ensemble members (forecasts), that will point-wise yield the analysis
and the analyzed members:

xa = xf +
∑

αixi (3.3)

Separately, the same linear combination can then be applied to any other model
variables or forcing fields such as the wind forcing, and the analyzed variable or
field is obtained. The procedure is illustrated in Figure 3.3. The model saves 48
averaged fields, and a restart file. The observation operator described below is
applied to the averaged velocity fields, which are then assembled in the estima-
tion vector together with (in this example) the restart-file temperature. The EnKF
filter saves the amplitudes. All model restart variables are then updated (for each
ensemble member, one at a time) and new restart files are generated.

Finally, a localization procedure removes spurious long-range correlations by
multiplying the correction generated by each observation, with a radial Gaussian
function centered on the observation. The Gaussian’s radius, as well as a cut-off
length after which the correction is set to zero completely, must be determined.

12 System description
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Figure 3.3: Succession of model integration, observation operator, data assimi-
lation scheme, and recomposition.

3.5 Radar observations observation operator

The non-linear transformation of orthogonal (model) currents into radial currents
pointing to (or away from) the radar station, is performed by the radar obser-
vation operator publically available as part of the Sangoma tools, see http:

//www.data-assimilation.net.

The transformation is performed according to:

uHF =
kb

1− exp(−kbh)

∫ 0

−h
u(z) · (e)r exp kbzdz (3.4)

where kb = 2π
λb

, and er is the unit vector poiting in the opposite direction to the
location of the radar. Positive values hence represent currents away from the
system. The operator essentially represents an average over the upper meters.

Furthermore, the radial currents are smoothed in the azimuthal direction using
a diffusion operator. Hence, currents farther away from the radar station will nat-
urally be more smoothed, similar to what occurs with observed currents.

The analysis update with a non-linear observation operator is not guaranteed
to be unbiased; the standard EnKF algorithm can still be used but one needs to
verify separately that the following relation holds:

〈h(xf )〉 = h(〈xf 〉) (3.5)

where 〈.〉 represents the ensemble average [Barth et al., 2011].
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Chapter 4

Results

4.1 Assimilation of HF radar currents

Our base experiment has a 2-day assimilation window, leading to 19 windows
during the experiment. Some of these windows do not have data at the San
Rossore radar station. In these windows, data assimilation is limited to one ve-
locity component (Palmaria station radial velocities). Assimilation of orthogonal
velocities would have been impossible for these windows.

The (radial) velocity rms error between the free run and the radar observations is
shown by the black curve in Fig. 4.1. Concerning the Palmaria radar, errors are
between 10 and 15 cm s−1 except during the last week of July 2010, when they
are over 20 cm s−1. Thus, the ensemble spread (10 cm s−1, see previous sec-
tion) is of the same order of magnitude as the model-observations discrepency.
Compared to most studies presented in chapter 2, these errors are already rela-
tively low, even without data assimilation. Let’s note that in another recent study
[Mermain et al., 2014], the authors found that when the model-observations dis-
crepancy is small (around 10 cm s−1), assimilation sometimes degrades the sim-
ulation. Concerning the San Rossore radar, errors are also around 10 cm s−1

during the first week; but then data becomes unavailable. Later during the exper-
iment, the errors are much higher, around 20 cm s−1.

The representativity error component of the observation error variance is set to
250cm s−1. This value may appear large, but the radar observations are very
dense in space, and the representativity error needs to account for the processes
represented (or not) in the model compared to the observations. Mermain et al.
[2014] used observation errors of 100 and 200 cm s−1).
The localization radius is set to 30km, with the cut-off length at 2000km. The
procedure updates the model’s (orthogonal) velocity, sea surface elevation, tem-
perature, and salinity at the restart time (i.e. the end of the assimilation window).
In between data assimilation cycles, the full model forwards the 100 ensemble
members with perturbed forcing fields. We also run one free member without
perturbations nor data assimilation.

14 Results

http://www.ulg.ac.be/
http://www.data-assimilation.net/


Deliverable 5.6

Figure 4.1: Root mean square difference [m.s−1] between model (different cases)
and observation radial currents for (a) the Palmaria station, (b) the San Rossore
station.

The rms errors of the data assimilative run are represented by the pink curve
in Fig. 4.1. Errors are somewhat reduced by the data assimilation procedures.
Only when the error is large (20cm s−1 and more), the corrections also become
more important and the improvement compared to the free run is about 5 cm s−1).
In any case, the errors are smaller than the free run errors even after the subse-
quent 2-day model integrations.

In order to further decrease the errors, one may try to reduce the representa-
tivity error. Hence, another experiment with strongly decreased values of (the
representativity component of) the observation error variance matrix was carried
out; results are shown by the dotted red curve and the blue curve, using repre-
sentativity errors of respectively 50 and 5 cm s−1 . As expected, the corrections
are much larger; but the model creates new errors in between assimilation cycles
much more strongly than before. Only during the last decade of July, the period
when the free model errors were large (about 20 cm s−1), data assimilation man-
aged to significantly reduce them without the model generating them again. In
general, out of the 3 simulations with different representativity errors, there is not
one single simulation that has consistently smaller errors during the whole exper-
iment.

For the model not to re-create errors so strongly, one could try to shorten the
assimilation window. Other experiments were carried out, similar to the last ex-
periment (blue curve) except for the assimilation window length, chosen as 24h
(dotted blue curve in Fig 4.1) and 72h (not shown). In general, similar to findings
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in Sperrevik et al. [2015], it appears that the assimilation window length is not
critical.
Other experiments used a localization radius of 60km instead of 30. It appeared
that, as the radar observations cover a large area, the radius of influence of an ob-
servation is not critical because there are always plenty of observations in close
proximity (or none at all). This is unlike assimilation of e.g. ARGO data.
Another experiment consisted in reproducing the simulation with the largest rep-
resentativity error (pink curve), but updating only the model velocity (u, v) without
changing the other model variables (temperature, salinity and surface elevation).
Errors are shown in the green curve, and are almost indistinguishable from the
pink curve. This means that the model physics do not have time, in between as-
similation cycles, to propagate (small) density changes to the model velocity.

Yet another experiment, based on the basis experiment (pink curve), includes the
wind forcing in the estimation vector. In practice, after the ensemble is integrated
in time, the data assimilation is performed on the radial velocities (as before), and
the wind is optimized afterwards, during the recomposition step. The model is
then run one more time using the analyzed winds. This leads to the red error
curve in Fig. 4.1, which is also lower than the errors of the free run. However,
in this experiment, analyzing the wind rather than directly changing the model
variables did not lead to smaller errors, indicating that maybe another one of the
perturbations is more critical, or at least that the wind optimization alone does not
improve the model enough. Actually, in a study in the neighboring North-Western
Mediterranean Sea (just to the west of our study domain), Mermain et al. [2014]
noted that optimizing the wind forcing did not allow to correct the phase of inertial
oscillations, which are an important component of the dynamics in both domains.

None of these experiments could decrease the rms errors further (not shown),
and indeed differences between the experiment results were marginal.

Given the difficulty to further improve the model velocities with the EnKF / EnKS
proposed here, a fixed-based SEEK filter [Pham et al., 1998] was also tried out.
The fixed directions of the error space are provided as the (temporal) EOFs of
a 1-month run immediately preceding the experiment. Results are shown by the
light blue curve in 4.1. It can be seen, in our particular experiment, that using a
static error space approximated by the model’s temporal variability does not allow
to improve the model, rather degrading the results.

Finally, as different authors mentioned (see chapter 2), a possible cause for the
difficulty to further improve the simulations may be the quality of (some) obser-
vations. Artifacts may be present at the extremities of the observed field, both
at the azimuthal edges and the maximum distance edge [Gomez et al., 2015].
An azimuthal "smear" of the observations may also be observed, particularly far
away from the radar station. Therefor, we carried out new, restrictive experiments
where all radar observations are eliminated, that are associated with a quality-
control error estimate larger than 1.5 cm s−1, or that are located at the azimuthal
edges of the field, or further away than 50km from the radar station. The experi-
ments were carried out with representativity errors of 10, 25 and 50 cm s−1. Rms
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Figure 4.2: Root mean square difference [m.s−1] between model and "cleaned
up" radial current observations for (a) the Palmaria station, (b) the San Rossore
station.

error timeseries are shown in Figure 4.2, respectively the dark blue, light blue
and red lines. The base experiment (with representativity error of 50 cm s−1) is
included for comparison (pink curve), the only difference compared with the red
curve being the considered observations. The free run error curve has been re-
calculated as well and is drawn in black.
Results are somewhat better, particularly in the second half of the experiment.
It also appears again that too small representativity errors are yielding bad re-
sults; a good value for the considered experiment is probably in the range 50-100
cm s−1.

4.2 Spatial analysis

The rms plots above do not indicate how the correction is spatially distributed.
As an example, the first correction for the base experiment is shown in Fig. 4.3.
As expected from the relatively low rms errors shown before, the forecast and
observations are already in good agreement. One eddy north of Corsica, visible
in the observations, is either absent or placed too much to the East in the model.
One can also observe the azimuthal smear mentioned above, which is more ac-
centuated further away from the radar station.
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Figure 4.3: For the base experiment, for the second hour of the first assimila-
tion window, (a) forecasted radial currents away from the Palmaria station, (b)
observations, (c) analysis, (d) correction.
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4.3 Temporal analysis

An important question is how long an impact a radar observation will have on the
model, or alternatively, how frequently current observations are required to best
constrain the model.

Therefor, we study the impact of the 2 radar velocities in a single point, at the
exact location where the radial currents toward the 2 radars are orthogonal. We
first consider a single observation per assimilation window, the second hourly-
average. The correction (also called increment) to hourly-averaged velocities,
obtained at that particular point, is represented by the blue curve in Fig. 4.4. The
coefficients of the analysis change every 48 hours, which explain the disconti-
nuities. As (at least some of) the ensemble anomalies must present dephased
inertial oscillations, the correction also presents the typical inertial cycle with a
period of 17 hours, although just one observation is provided.

The forecast, observation and analysis (for the second 48-hour period) are shown
in Fig. 4.5. The single assimilated observation is represented by a red arrow; the
other observations are plotted for reference only but are not assimilated. One
can observe that although a single linear combination is built for the 48 hours of
the assimilation window, the result of the assimilation is so, that the correction
is larger mostly during the first 12 hours, i.e. close to the observation. During
this period, the velocity is changed from north-eastward to south-eastward. Af-
terwards, the intensity of the velocity is changed less heavily, and the phase is
almost in the forecast and the analysis.

When using 48 hourly-averaged velocities during the 48-hour window, but still
only in 1 single point in space, the corresponding correction is shown by the red
curve in Fig. 4.4. One can see that the inertial oscillation correction is much
stronger. This shows the beneficial impact of having very frequent observations
(i.e. every hour).

During the REP’10 campaign, surface drifters were also launched. However, very
large rms velocity errors were obtained between model and drifters (27 cm.s−1),
but also between radar and (projected) drifter velocities (25 cm.s−1). This may
be due to the fact that hourly-averaged model and radar velocities do not cor-
respond to the mean velocity measured by the drifter between 2 transmissions
(usually larger than 6 hours, i.e. one third of the inertial oscillation period). It may
also be caused by outliers in the drifter data, with huge errors (up to 70 cm.s−1).

4.4 Assimilation of radar and temperature observations

The ensemble temperature spread (about 0.5°C) has the same order of mag-
nitude as the model-observation difference (about 1.5°C). However, assimilating
radar currents leads to a (small) deterioration of the rms error between model and
observed (satellite) sea surface temperature (SST). The errors are represented
in Fig. 4.6 for all the same experiments as described above; they are all larger
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Figure 4.4: Upper panel: velocity increment when assimilating velocity in a sin-
gle point. The blue curve corresponds to the case when assimilating once per
time-window, the red curve to the case when assimilating each hourly-averaged
observation. Lower panel: autocorrelation of the timeseries in the upper panel.

than the for the free run. Unfortunately, the inability to improve temperature (and
salinity) fields by observing radar currents was also noted in other, recent studies
[Zhang et al., 2010, Mermain et al., 2014, Sperrevik et al., 2015].
Therefor, another experiment was conducted where we assimilated satellite SST
measurements as well. The SST data assimilation procedure itself is exactly the
same as for radar data; R is chosen as 0.75°C.
Three experiments are carried out. In the first one, the whole estimation vector
(i.e. model velocity, temperature, salinity and surface elevation) is updated by
the two observations. In the second experiment, radar observations update only
model velocities, and SST observations update only temperature, salinity and
surface elevation. In the last experiment, salinity and surface elevation are not
updated at all. The 3 experiments correspond respectively to the red, dark blue
and light blue curves in the bottom panel of Figure 4.6.
One can observe that by assimilating both radar and SST data, the temperature
errors are now consistently lower than the free run, instead of being slightly de-
graded by assimilation of radar data alone. The lack of difference in between the
3 experiments seems to confirm the short term decoupling between the velocity
and density updates by the data assimilation, mentioned previously. Further-
more, plots of the velocity rms error when assimilating both radar and SST data
(not shown) are very similar to the base experiment (without assimilating SST),
indicating that SST observations neither improve nor degrade the velocity field.
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Figure 4.5: Feather plot of the velocity at the single point where data is assimi-
lated, during the 48 hours of the second assimilation window. First panel: model
forecast. Second panel: observation; the arrow corresponding to the assimilated
observation is represented in red, while the other arrows are drawn for illustra-
tion only. Third panel: analysis. Fourth panel: data assimilation increment. The
axis in the feather plots are orthonormal; the velocity at the chosen location just
happens to be oriented mainly north-south. The fourth panel has different or-
thonormal axis.
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Figure 4.6: Rms SST errors. Upper panel: experiments with DA of radar currents
only (same experiments as in Fig. 4.1). Lower panel: experiments with DA of
radar and SST observations.
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Figure 4.7: RMS temperature error between drifters and model forecasts when
assimilating only radar velocities (blue curve) or when assimilating SST images
as well (green curve).

Comparisons of independent temperature measurements realized by the drifters,
with the “free” model run (i.e. assimilation of radar velocity only) and the SST-
assimilating model are represented respectively by the blue and green curves in
Fig. 4.7. One can observe a average reduction of 0.2°C of the rms errors in the
latter case.
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Chapter 5

Discussion and conclusion

In this report, we analyzed whether radar observations could improve a regional
model of the Ligurian Sea, using an ensemble of 100 ROMS models. The en-
semble is generated by perturbing the open sea boundary conditions and the
wind forcing, and by adding a supplementary stochastic term to the momentum
equations.
The estimation vector used by the Ensemble Kalman Filter (EnKF) contained
multiple instances of hourly-averaged currents (48 instances in the case when
the assimilation window is 2 days), making the EnKF closely related to the Asyn-
chronous Ensemble Kalman Filter (AEnKF) and the Ensemble Kalman Smoother
(EnKS).
The free run presented relatively small errors compared to the radar observa-
tions, of the order of 15 cm.s−1. An experiment with a fixed-based SEEK filter
based on "historical" EOFs did degrade the velocity field rather than improve it.

The ensemble spread is of the same order of magnitude as the free run - obser-
vations discrepancy. The EnKF data assimilation results showed that the radar
data allows to somewhat further reduce the discrepancy between model velocity
and radar observations, particularly when the model itself departs more strongly
from observations (> 20 cm.s−1).
The results showed very little sensitivity to the assimilation window length, to the
localization radius and cut-off length. The representativity component of the ob-
servation however must not be chosen too small, leading to over-fitting of the data
and the model immediately creating large transients and new errors. An appro-
priate range, in the case of the current experiment, is 50 to 100 cm.s−1.
Adding the wind forcing in the estimation vector so as to obtain an analyzed forc-
ing field, and then re-running the model with this new forcing, did not yield better
results than updating directly the model variables.

Observations have the largest impact during the next few hours. Furthermore,
the ensemble was shown to adequately represents the uncertainty due to differ-
ent phases and amplitudes of the inertial oscillations. Even a single observation
allows the assimilation filter to modify the inertial oscillation phase (during a few
hours). When observations are available with high temporal frequency of obser-
vations (hourly, in this case), the phase of the inertial oscillations is constantly
modified in the model.
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Surface drifter velocities could not be used, because they represent an average
velocity over a much longer period, and/or due to the presence of outliers, and
hence they presented very large discrepancies compared to both the model and
the radar observations.

Assimilation of radar data does not allow to improve model SST; actually, model
SST is very slightly degraded. In general, the radar data and the model den-
sity are not sufficiently correlated for one to influence the other through high-
frequency data assimilation, as the model needs more time for a density change
to reflect in the velocity field. However, assimilating both radar velocities and
satellite SST allows to improve both the model velocity and the model SST. This
is confirmed by comparisons with drifter temperature measurements.
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