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Chapter 1

Introduction

In work package 3 of SANGOMA existing data-assimilation methods are investi-
gated and new methods are developed that allow for non-linear models and non-
linear observation operators. The different methods are implemented as modules
for the data-assimilation tool boxes used by the SANGOMA partners. One of the
methods has to be implemented by all partners of SANGOMA that run a toolbox.

During the preparation of this task, the partners extensively discussed the
possible methods for the common implementation. Candidates were the following
methods:

• Equivalent weights particle filter (EWPF)

• Multivariate Rank Histogram Filter (MRHF)

• Gaussian Mixture Filter (GMF)

The EWPF is the research focus of the SANGOMA partner at University of Read-
ing [van Leeuwen, 2010, van Leeuwen and Ades, 2013]. The MRHF has been
developed by the Partner CNRS-LEGI at the time when the methods were dis-
cussed (meanwhile the method is published as Metref et al. [2014]). The Gaus-
sian mixture filter is an extension of the Kalman filter that models non-Gaussian
state distributions as sums of multiple Gaussian distributions.

The discussions involved the consideration of the method’s features, imple-
mentation complexity, as well as readiness for a common implementation. The
EWPF is a fully non-linear method that does not base on a modeling of distribu-
tions. However, the particle forecasting is rather complex as it involves a stochas-
tic perturbation. In addition, the proposal density has to be applied in the form of
a “nudging term” in the proposal step during the time stepping of the model and
the equivalent weights step has to be implemented in a model-dependent way.
The MRHF does imply a modeling of the distributions by an ensemble weighting
scheme following the histogram of the ensemble distribution. At the time of the
discussions, the MRHF was under development, and it still had to be checked
whether a sufficient description of the method could be prepared to allow for
a common implementation in the different assimilation tool boxes. The Gaus-
sian mixture filter is less advanced as the distributions are modeling by a sum of
Gaussian functions. However, it is also less skillful for the treatment of non-linear
models and observation operators. As such, an implementation of the EWPF or
MRHF would be preferable.

4 Introduction
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The discussions finally lead to the decision to use the EWPF method for the
common implementation. Both the proposal step and equivalent weights step
of the filter method can be implemented in a model-independent code that uses
call-back routines for the model-specific operations. This strategy is consistent
with the data model of SANGOMA.

The purpose of this deliverable is to report on the implementation of the EWPF
as a common new data assimilation method in all toolboxes.
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Chapter 2

The Equivalent Weights Particle
Filter (EWPF)

Particle filters, like ensemble methods, are variants of the Monte Carlo methods
in which the probability distribution of the model state given some observations is
approximated by a number of particles; however, unlike Kalman filter-based en-
semble methods, particle filters are fully non-linear data assimilation techniques.
While particle filters are not a new concept, until very recently they have been
deemed to be computationally unfeasible for large-dimensional systems due to
the filter degeneracy problem. However, recently there has been a new develop-
ment in the field and particle filter variants have emerged which have been shown
to work for large dimensional systems with a limited number of particles. One
such a method is the equivalent weights particle filter (EWPF) [Van Leeuwen,
2010, 2011, Ades and van Leeuwen, 2012], which by design avoids filter de-
generacy by exploiting future observations. EWPF can be summarised by the
following steps:

1. Before observation time k for each time step 0 ≤ m < k and for each
particle j = 1, ..., N :

(a) Advect the model state in time

x
(m)
j =Mm

(
x
(m−1)
j

)
+ β̃

(m)
j + Υ

[
y(k) −Hk

(
x
(m−1)
j

)]
(2.1)

where Υ = Q(H(k))T
[
H(k)Q(H(k))T + R

]−1
with Q being the covari-

ance matrix of model errors, R the covariance matrix of observation
errors, and H(k) the linearised version of the observation operator Hk.

(b) Compute weights

w
(m)
j = w

(m−1)
j

p
(
x
(m)
j |x

(m−1)
j

)
q
(
x
(m)
j |x

(m−1)
j , y(k)

) , (2.2)

where both transition densities are assumed to be Gaussian and are

6 The Equivalent Weights Particle Filter (EWPF)
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calculated according to
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2. At observation time k:

(a) Calculate the maximum weight value for each particle

Cj = − logw
(k−1)
j +

1

2

[
y(k) −Hk

(
Mk

(
x
(k−1)
j

))]T

[
H(k)Q
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.

Then choose a target weight C such that 80% (or any other suitable
percentage) of particles can reach this weight, i.e. that 80% of Cj are
less than C.

(b) Find the deterministic particle analysis update (for the particles which
can reach the target weight C) via

x̌
(k)
j =Mk

(
x
(k−1)
j

)
+ αjΥd

(k)
j , (2.5)

where

Υ = Q
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d
(k)
j = y(k) −H(k)

(
x
(k)
j

)
. (2.10)

(c) Perturb each particle with random perturbations

x
(k)
j = x̌

(k)
j + dβ

(k)
j (2.11)

where the perturbation dβ
(k)
j is drawn from a mixture of uniform and

Gaussian distributions, given by

dβ ∼ (1− ε)Q1/2U(−γU I,+γU I) + εN (0, γ2NQ). (2.12)

Choosing ε = 0.001/N ensures that we mainly sample from the uni-
form distribution, but the possibility to sample from the Gaussian dis-
tribution ensures the support of the proposal density is at least equal
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to the support of the model prior. Other parameters are chosen to be
as follows:

γU = 10−5 (2.13)

γN =
2n/2εγnU

πn/2(1− ε)
. (2.14)

(d) Calculate the full weights at time k

w
(k)
j = w

(k−1)
j

p
(
x
(k)
j |x
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j

)
p
(

y(k)|x(k)
j

)
q
(
x
(k)
j |x

(k−1)
j , y(k)

) . (2.15)

taking the final perturbation into the account using the transition den-
sity

q
(
x
(k)
j |x

(k−1)
j , y(k)

)
= (1−ε)Q1/2U(−γU I,+γU I)+εN (0, γ2NQ). (2.16)

(e) Resample to obtain a full ensemble again, e.g. using universal resam-
pling. After resampling the weights of the resampled particles are set
to be equal, i.e. w(k)

j = 1/N .
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Chapter 3

Description of the EWPF code

This chapter describes the structure of the central generic routines of the EWPF.
The calling interface to the routines ‘proposal_step‘ and ‘equal_weight_step‘ is
documented as well as the interfaces of the call-back routines that are specific to
the model and the observations that are assimilated. These routines have to be
implemented by the user of the EWPF code.

3.1 The main routines called by user

The EWPF code is structured such that a user calls only two routines: ‘pro-
posal_step‘ and ‘equal_weight_step‘ from their code. The ’proposal_step’ routine
nudges particles at each model time step towards the next set of future obser-
vations. It also accumulates weight of each particle due to the nudging. The
’equal_weights_step’ routine updates particles which can achieve the determin-
istic move in space using the current observational information and then resam-
ples updated particles to form a full set of particles with equal weights for the next
assimilation window. The calling interfaces of both routines is documented below.
Figures 5.1 and 5.2 in Chapter 5 show the schematic of the EWPF code sepa-
rated into the two main routines that are called by the user.

proposal_step(weight,x_n,y,tt,obsVec,dt_obs) bind(C, name="proposal_step_")

use , i n t r i n s i c : : ISO_C_BINDING
use sangoma_base , only : REALPREC, INTPREC ! use sangoma def ined p r e c i s i o n f o r C−Bind
use user_base ! use user def ined parameters
i m p l i c i t none

integer ( INTPREC) , in tent ( in ) : : t t ! cu r ren t model t ime step
integer ( INTPREC) , in tent ( in ) : : obsVec , dt_obs ! number o f next observa t ion set & model

! t imesteps between obs
rea l (REALPREC) , in tent ( in ) , dimension (Ny) : : y ! vec to r o f the next set o f observat ions
rea l (REALPREC) , in tent ( inout ) , dimension (Nx ,Ne ) : : x_n ! s t a t e mat r i x a t the cu r ren t t ime step n
rea l (REALPREC) , in tent ( inout ) , dimension (Ne ) : : weight ! vec to r con ta in ing weights f o r a l l p a r t i c l e s

equal_weights_step(weight,x_n,y) bind(C, name="equal_weight_step_")

use , i n t r i n s i c : : ISO_C_BINDING
use sangoma_base , only : REALPREC, INTPREC ! use sangoma def ined p r e c i s i o n f o r C−Bind
use user_base ! use user def ined parameters
i m p l i c i t none

rea l (REALPREC) , in tent ( inout ) , dimension (Ne ) : : weight ! vec to r ho ld ing p a r t i c l e weights
rea l (REALPREC) , in tent ( out ) , dimension (Nx ,Ne ) : : x_n ! mat r i x o f s ta tes f o r each p a r t i c l e

! a t cu r ren t observa t ion t imestep n
rea l (REALPREC) , in tent ( in ) , dimension (Ny) : : y ! vec to r o f obs . data a t cu r ren t t ime step n
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3.2 Model specific call-back routines

There are some model specific functions that each user has to implement in their
system, they are:

• ’cb_H’ - observation operator H;

• ’cb_HT’ - transpose observation operator HT ;

• ’cb_solve_r’ - inverse observation error covariance operator R−1;

• ’cb_solve_hqht_plus_r’ - inverse innovation error covariance operator (HQHT+
R)−1;

• ’cb_Qhalf’ - square-root of model error operator Q1/2.

Each of these routines need to be implemented as operators acting on a given
input vector(s). Note that a half model error operator needs to be implemented
since it is used to obtain random normal numbers with Q1/2 covariance matrix in
’equal_weights_step’ routine. Where we need to use the full Q matrix ’cb_Qhalf’
is simply applied twice.
We list here the purpouse of these functions and suggested input/output variables
for each of them.

cb_H(dim2,vecIn,vecOut)
Given vecIn, a vector or collection of vectors in state space, compute vecOut =
H(vecIn), where H is a mapping from state space to observation space.
use sangoma_base ! use sangoma−def ined p r e c i s i o n f o r C−Bind
use user_base ! use user def ined parameters
i m p l i c i t none

integer ( INTPREC) , in tent ( in ) : : dim2 ! second dimension o f the vector ,
! i . e . dim2=1 i f on ly one p a r t i c l e
! or s t a te vec to r i s used and
! dim2 = Ne i f the whole ensemble
! o f p a r t i c l e s i s used

rea l (REALPREC) , in tent ( in ) , dimension (Nx , dim2 ) : : vecIn ! i npu t vec to r i n s ta te space to which to
! apply the observa t ion opera tor h , e . g . h ( x )

rea l (REALPREC) , in tent ( inout ) , dimension (Ny , dim2 ) : : vecOut ! r e s u l t i n g vec to r i n observa t ion space

cb_HT(dim2,vecIn, vecOut)
Given vecIn, a vector or collection of vectors in observation space, compute
vecOut = HT (vecIn), where HT is a mapping from observation space to state
space.
use sangoma_base ! use sangoma−def ined p r e c i s i o n f o r C−Bind
use user_base ! use user def ined parameters
i m p l i c i t none

integer ( INTPREC) , in tent ( in ) : : dim2 ! second dimension o f the vector ,
! i . e . dim2=1 i f on ly one p a r t i c l e
! or s t a te vec to r i s used and
! dim2 = Ne i f the whole ensemble
! o f p a r t i c l e s i s used

rea l (REALPREC) , in tent ( in ) , dimension (Ny , dim2 ) : : vecIn ! i npu t vec to r i n obs . space to which to
! appl h , e . g . h^T( x )

rea l (REALPREC) , in tent ( inout ) , dimension (Nx , dim2 ) : : vecOut ! r e s u l t i n g vec to r i n s ta te space elements

10 Description of the EWPF code
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cb_solve_r(dim2,vecIn,vecOut)
Given vecIn, a vector or collection of vectors in observation space, compute
vecOut = R−1(vecIn), where R is observation error covariance.
use sangoma_base ! use sangoma def ined p r e c i s i o n f o r C−Bind
use user_base ! use user def ined parameters
i m p l i c i t none

integer ( INTPREC) , in tent ( in ) : : dim2 ! a second dimension o f the vecIn , vecOut
rea l (REALPREC) , in tent ( in ) , dimension (Ny , dim2 ) : : vecIn ! i npu t vec to r i n observa t ion space

! which to apply the inverse observa t ion e r r o r
! covar iances R, e . g . R^{−1}(d )

rea l (REALPREC) , in tent ( inout ) , dimension (Ny , dim2 ) : : vecOut ! r e s u l t i n g vec to r i n observa t ion space

cb_solve_hqht_plus_r(dim2,vecIn, vecOut)
Given vecIn, a vector or collection of vectors in observation space, compute
vecOut = (HQHT + R)−1(vecIn), where R is observation error covariance, H
is mapping from state space to observation space and Q is model error covari-
ance.
use sangoma_base ! use sangoma def ined p r e c i s i o n f o r C−Bind
use user_base ! use user def ined parameters
i m p l i c i t none

integer ( INTPREC) , in tent ( in ) : : dim2 ! second dimension o f the vector ,
! i . e . dim2=1 i f on ly one p a r t i c l e
! or s t a te vec to r i s used and
! dim2 = Ne i f the whole ensemle
! o f p a r t i c l e s i s used

rea l (REALPREC) , in tent ( in ) , dimension (Ny , dim2 ) : : vecIn ! vec to r i n observa t ion space to which to
! apply the observa t ion e r r o r covar iances R,
! e . g . (HQH^T+R)^{ −1}(d )

rea l (REALPREC) , in tent ( inout ) , dimension (Ny , dim2 ) : : vecOut ! r e s u l t i n g vec to r i n observa t ion space

cb_Qhalf(dim2,vecIn, vecOut)
Given vecIn, a vector or collection of vectors in state space, compute vecOut =
Q1/2(vecIn), where Q is model error covariance.
use sangoma_base ! use sangoma def ined p r e c i s i o n f o r C−Bind
use user_base ! use user def ined parameters
i m p l i c i t none

integer ( INTPREC) , in tent ( in ) : : dim2 ! second dimension o f the vector ,
! i . e . dim2=1 i f on ly one p a r t i c l e
! or s t a te vec to r i s used and
! dim2 = Ne i f the whole ensemle
! o f p a r t i c l e s i s used

rea l (REALPREC) , in tent ( in ) , dimension (Nx , dim2 ) : : vecIn ! vec to r i n s ta te space to which to apply
! the squarerooted model e r r o r covar iances
! Q^ { 1 / 2 } , e . g . Q^ { 1 / 2 } ( d )

rea l (REALPREC) , in tent ( inout ) , dimension (Nx , dim2 ) : : vecOut ! r e s u l t i n g vec to r i n s ta te spacen

3.3 User defined parameters in ’user_base’ module

In the module ’user_base’ module a user can define all the parameters for the
EWPF, specifically

• Dimension parameters:

– Ne - number of particles

– Nx - dimension of the state vector

– Ny - dimension of the observation vector

• Parameters specific to the EWPF step for mixture density:

Report on Implementation 11
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– efac = 0.001/real(Ne)

– ufac = 0.00001

More information about these parameters and their values can be found in
Ades and van Leeuwen [2012].

• Percentage of particles that can reach target weight: keep. Usually keep
= 0.8 is a good choice. See Ades and van Leeuwen [2012] on how the
choice of keep affects EWPF results. Using keep we define number of
particles that will be kept and moved in the equal weights step as Ne_keep
= nint(keep*Ne).

• Nudging parameters in Bprime routine:

– freetime - a fraction of time between consequent observations sets,
i.e. last and next that no nudging is performed. That is using freetime
= 0.6 will mean there will be no nudging until more than 60% of model
timesteps between last and next observations have been realised.
freetime is compared against tau, which is the fraction of time passed
between two analyis times and given by

tau = 1.0− (tnextObs − tcurrent)/dtobs.

– nudgefac - parameter between 0 and 1 scaling the nudging factor.

12 Description of the EWPF code

http://www.awi.de/
http://www.data-assimilation.net/


Deliverable 3.3

Chapter 4

Implementation of the EWPF
code in the different toolboxes

The implementation has been performed by the partners of the project into the
different toolboxes (EMPIRE, NERSC EnKF toolbox, OAK, OpenDA, PDAF). Four
of the implementations use the Fortran implementation of the EWPF, while the
NERSC EnKF toolbox is coded for Matlab. This chapter describes the different
implementations.

4.1 Implementation into EMPIRE

The EWPF has been implemented into EMPIRE (Employing MPI for Researching
Ensembles) and full details, including EMPIRE code in FORTRAN, are available
online www.met.reading.ac.uk/ darc/empire/doc/html/.

There are a number of particle and ensemble filters implemented in EM-
PIRE. A user can select the type of filter to be used by changing settings in
’pf_parameters.dat’. In particular for the EWPF, one has to select ’filter = ’EW”.
The ’pf_parameters.dat’ data file is also used to select other options for the filter
such as observation generation, number of observations (if generated), run twin
experiments or not. In addition, some of the parameters in ’user_base.F90’ are
defined in this file such as ’efac’, ’ufac’, ’keep’, and ’nudgefac’.

When run, the first thing EMPIRE does is to call ’configure_model’ routine
which returns dimensions of the state and next set of observations as well as the
time at which next observations are available. However, a user can and needs to
use the ’configure_model’ routine to load in memory other data such as data nec-
essary for call-back routines ’cb_Qhalf’ and ’cb_solve_r’. Further, if HQHT + R
does not change over time then the user also can factorise it in ’configure_model’
to save computational time later. After the assimilation of the first observations
has been completed, EMPIRE calls ’reconfigure_model’ which returns the time at
which next observations are available and their dimension. This continues until
all observations are assimilated.
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4.1.1 Knowledge gained at EMPIRE

Being that EWPF was developed at UREAD by Van Leeuwen [2010, 2011] we
have substantial knowledge in the algorithm and its nuances, such as the im-
portance of nudging term and model error operator. Further UREAD developed
and provided the code compliant with Sangoma data model in WP1 as well as
implemented it in our own toolbox EMPIRE. Thus from this cross-implementation
of one common tool in most of Sangoma toolboxes we mainly and importantly
gained knowledge on how to organise code and work with partners who have
drastically different systems, from languages that they use to data models. For
example, we originally wrote the code in Fortran, but then released a Matlab ver-
sion too since some partners preferred Matlab language and also since many
tools in Sangoma are both available in Fortran and Matlab. Thus both versions
of the code are compliant with Sangoma data model and have exactly the same
structure and implementation instructions.

Further, from the point of view of the algorithm development, it has been very
interesting to learn what other partners thought about the EWPF as a non-linear
data assimilation method and developing discussion on comparisons between
various ensemble data assimilation methods.

Finally, the EWPF is an important part of EMPIRE toolbox and will remain part
of it in the future.

4.2 Implementation into NERSC assimilation system

The EnKF Matlab toolbox presently distributed on the webpage enkf.nersc.no
would have needed too extensive structural changes to include the EWPF. NERSC
has instead implemented the EWPF into a newer Matlab package for data assimi-
lation education and research, designed to accommodate Particle Filters as much
as Ensemble Kalman Filters.

The Data Assimilation and Ocean Forecasting group at NERSC is thus devel-
oping a Data Assimilation Toolbox in which different up-to-date data assimilation
methods are implemented. The ultimate goal is to provide and maintain a stable
and documented version of the Toolbox and make it available on enkf.nersc.no.
At present the Toolbox is in its β-version, with different formulations of stochastic
and square-root filters are implemented and a bootstrap particle filter. Necessary
tests for stability of the code, its careful debugging and documentation are in or-
der to move toward version α. The Toolbox is presently coded in Matlab but we
plan a Python version after the end of Sangoma.

At the moment the Toolbox contains 4 models: Lorenz ’63, Lorenz ’96, a lin-
ear advection and a Quasi-Geostrophic model. It is possible to play with various
models and observational setups, including observational interval, error covari-
ances, degree of nonlinearity of the models and observational type. The EWPF
has been implemented in the Toolbox and is now among the methods available
for testing and benchmarking.

14 Implementation of the EWPF code in the different toolboxes
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4.3 Implementation into OAK

The EWPF implementation in OAK is based on the reference Fortran code. OAK
uses so far an off-line coupling between the model and the assimilation routines.
However, the EWPF implementation requires a model state update at every time
step, which is not practical with an off-line coupling. To integrate the EWPF
scheme, we implemented an on-line coupling between the model and OAK. As
in PDAF, subroutines for initialization and cleaning-up have to be added near the
beginning and near the end of the main program of the model and a subroutine
for the analysis inside the time-loop of the model. The online-coupling supports
an already MPI parallelised model using sub-domains, but the number of pro-
cessors must be equal to the number of sub-domains times the ensemble size.
For the EWPF and the standard global assimilation scheme, the analysis and the
proposal step are performed only by the first MPI process (master). Only the local
analysis step is fully parallelised.

The implementation of all call-back routines were quite straight-forward, ex-
cept for the routine cb_solve_hqht_plus_r which applies the inverse of the matrix[
H(k)Q(H(k))T + R

]
to a given vector. As this matrix is symmetric and positive de-

fined we use the conjugate gradient algorithm to solve this matrix equation.

In order to activate the EWPF scheme, the parameter schemetype has to be
set to the value 2 in the OAK configuration file. The parameters that can be used
to tune the EWPF can also be set in this file by defining a section as follows.

# percentage of kept particles
EWPF.keep = 0.8
# normal standard deviation of 1
EWPF.nstd = 1.0
# normal mean of 0
EWPF.nmean = 0.0
# parameter for uniform distribution in equal_weight_step
EWPF.ufac = 0.00001
# parameter for uniform distribution in equal_weight_step
EWPF.efacNum = 0.001
# parameter in Bprime routine of freetime i.e. time with no nudging
EWPF.freetime = 0.6
# nudging strength parameter
EWPF.nudgefac = 0.9

These are also the default values of these parameters (as defined in the mod-
ule user_base.f90). At any analysis cycle the weight can be saved by adding an
entry for diagnostics:

Diag001.weigthf = ’file.nc#weightf’
Diag001.weigtha = ’file.nc#weighta’

Using these lines, one can save the weights before (weightf) and after the
analysis (weighta) into the NetCDF file file.nc as the NetCDF variables weightf
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and weigtha respectively.

4.3.1 Knowledge gained at OAK

For the OAK toolbox, the adapted data model was suitable to integrate the pro-
vided Fortran analysis scheme into OAK. The data model makes intensive use
of call-back routines using only essential parameters that the EPWF analysis
scheme needs to know about (which is indeed a good programming practice).
However, to implement the call-back routine, access to additional variables (some-
times specific to OAK) are necessary. One solution could be to make all these
variables global. This is illustrated in the following code where the call-back func-
tion representing the observation operator needs the location of the observations,
but this information is not necessary for the EWPF routine equal_weight_step
and therefore not a parameter passed to this routine.

module oak
! location of the observations needed for the observation operator
real :: obsgrid(...)

contains
subroutine ewpf_analysis(x...)

call equal_weight_step(...,cb_H,...)
end subroutine

! observation operator
subroutine cb_H(x,Hx)

! needs obsgrid and available though global scope
end subroutine

However, global variables are avoided in OAK due to various reasons (implicit
coupling of subroutines, potential bugs due to mutable global variables, increased
difficulty to write unit tests, inflexibility and potential concurrency issues), at least
for new code added to OAK. The solution to this problem was to use nested
call-back functions, which is possible in Fortran 2003:

module oak
contains

! location of the observations is explicitly passed as argument

subroutine ewpf_analysis(x, obsgrid...)
call equal_weight_step(...,cb_H,...)

contains
! observation operator
subroutine cb_H(x,Hx)

! needs obsgrid and available though local scope
end subroutine
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end subroutine
end module

Nested subroutines can access variables of the parent subroutine. Alternative
ways to avoid global variables are discussed in ? which include a reverse com-
munication interface (relatively complex to implement) and Fortran 2008 objects
(not compatible with the adopted data model).

4.4 Implementation into OpenDA

The EWPF reference implementation in SANGOMA is written in Fortran90. Our
goal was to not reimplement the algorithm but to directly use the reference imple-
mentation. OpenDA is written in Java except for some computational intensive
parts. These parts are written in C and a bit in Fortran90. This code is called
the native part of OpenDA. To implement the EWPF algorithm we have included
the whole Fortran90 toolset from SANGOMA in the native part of OpenDA. All
SANGOMA routines are used as is, which allows easy upgrading in case the
SANGOMA tools are improved/updated in the future. We use JNA
(https://en.wikipedia.org/wiki/Java_Native_Access) to interface between the
Java and the SANGOMA tools. In order to add the EWPF to OpenDA we have

• added the SANGOMA Fortran90 tools and EWPF code to the native part of
OpenDA. We do not use the make system of the SANGOMA tools but the
OpenDA make system to compile the SANGOMA tools into a dynamic link
library,

• implemented a Fortran90 module (oda_EWPF_wrapper.f90) that implements
the user routines needed by the SANFOMA EWPF implementation and
some interface routines that are actually called from Java. These interface
routines are needed to pass and initialize the user routines,

• added a Java implementation for interfacing with the routines in oda_EWPF_wrapper.f90.
The EWPF method fits within the ensemble-based data assimilation frame-
work of OpenDA. Therefore our java code only needs to implement the
"analysis" method. The analysis calls, indirectly using oda_EWPF_wrapper.f90,
the SANGOMA EWPF routines proposal_step and equal_weight_step re-
spectively at nudging and analysis times.

The user can use the EWPF method by selecting it in the OpenDA configura-
tion file in the following way:

<algorithm className="org.openda.algorithms.particleFilter.EWPF">
<workingDirectory>./algorithm</workingDirectory>
<configString>EWPF_config.xml</configString>
</algorithm>

The observation handling in OpenDA is very strict when it comes to matching
model times with observation times. This is a small complication for the EWPF
algorithm where we match model results to observations in the future. In a sim-
ilar way, the ensemble-based data assimilation framework in which the EWPF is
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implemented prefers to run from observation time to the next observation time
not stopping the model in between. The solution is to add to the OpenDA obser-
vation component an option to virtually create observations at the nudging time
instances with an observed value corresponding to the "real" observation with is
used at the re-weighting step. In this way, using these virtual/fake observations,
the EWPF algorithm fits nicely in the time stepping and interpolation framework.

The code is available as part of OpenDA.

4.4.1 Knowledge gained at OpenDA

The EWPF is part of OpenDA and has been implemented using the the Sangoma
fortran code directly (i.e. without any changes to the implementation code). Cur-
rently it is part of the development version but it will be part of the upcoming
releases.

We have been experimenting with simple Lorenz models (mostly the 3-variable
butterfly) to test the EWPF method, so far the results are not what we have ex-
pected, and this seems to be due to the addition of the noise in the proposal step
where each particle is nudged towards future observations. Hence, we need to
run more experiments and learn more about the nudging step for each model to
see if and how we could unlock the potential of the algorithm.

4.5 Implementation into PDAF

PDAF [Nerger and Hiller, 2013] has an internal interface to all filter methods.
The webpage (http://pdaf.awi.de/trac/wiki/AddFilterAlgorithm) describes the im-
plementation of an additional filter in PDAF. Following this description, it is possi-
ble to add the SANGOMA EWPF as a new filter in PDAF.

Since a formulation of the EWPF is already included in the work version of
PDAF, it was decided against the approach to add the SANGOMA EWPF as
a completely new filter and instead to implement the SANGOMA routines as a
new subtype of the existing EWPF filter. Thus, when the initialisation routine
PDAF_init is called, the user has to provide the desired subtype. Currently three
different formulations are available (see Table 4.1).

Subtype Filter
0 Semi parallelized EWPF
1 Full parallelized EWPF
2 SANGOMA EWPF

Table 4.1: Available EWPF subtypes in PDAF

As described in the presentation of the EWPF algorithm, at each model time
step in this assimilation method, the model states need to be changed either by
the ‘proposal step’ or the ‘equivalent weights step’ of the EWPF. This change is
done by adding a single call to the assimilation routine (see Fig. 4.1) in the time
stepping routine of the model code.
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CALL PDAF_assimilate_ewpf_si(outflag)
INTEGER :: outflag ! Status output flag of PDAF

Figure 4.1: Call to PDAF in the model code

Using this implementation concept, the call to PDAF from the model is iden-
tical for each subtype of the EWPF. The user just needs to provide the correct
callback functions in the call, since they may differ for different implementations
of the EWPF. The call-back routines have been implemented using default names
defined inside PDAF_assimilate_ewpf_si. The implementation was straight for-
ward and mainly we were able to use call-back routines of the already existing
EWPF implementation.

In order to keep track of the timings, at the beginning of a new assimilation
cycle, a variable nsteps is initialised internally in PDAF as the number of model
steps between the current time step and the new observation time step. Using
this variable, it is possible to distinguish whether the proposal or equal weights
update needs to be done. It should always be possible to initialise the variable
nsteps at the beginning of the assimilation interval, since by then the observa-
tions for the next assimilation time need to be available.

Inside the routine PDAF_assimilate_ewpf_si the filter routines themselves
are called as is exemplified in Fig. 4.2. Here, the names of the callback routines
used the PDAF-internal naming scheme.

To include the SANGOMA EWPF into this routine it is only necessary to call
the SANGOMA EWPF routines inside of this routine and provide the necessary
input variables and callback routines (Those variables starting with ’U_’). The
implementation supports ensemble parallelization, which uses already existing
routines in PDAF.

To be able to modify the parameter values that are defined in the module
user_base of the SANGOMA EWPF, the module was included with ‘use’ in the
routine PDAF_assimilate_ewpf. Then, the parameters, like the nudging strength
of the proposal step can been adjusted when calling the initialization routine of
PDAF.

4.5.1 Knowledge gained at PDAF

Overall, the inclusion of the EWPF code into PDAF was very easy as the data
model is fully compatible the the interface standard used in PDAF. The routines
’proposal_step’ and ’equal_weight_step’ are integrated into the core library part
of PDAF, in which the scope of variables is clearly separated from the scope of
model- and observation-specific user routines like the call-back routine providing
the observation operator.

Compared to other filter methods already available in PDAF, the requirement
of the additional Fortran module ’user_base’ was a bit unfortunate. One could
easily avoid this module, which is only used for the SANGOMA version of the
EWPF by adding the parameters set in the module as arguments to the interface
of the routines ’proposal_step’ and ’equal_weight_step’. Here not the full list
of parameters would be required for both routines, but only those used in the
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! Increment time step counter
cnt_steps = cnt_steps + 1

cntloop: IF (cnt_steps < nsteps) then
! ******************************************************************
! *** At each time step without observations- Proposal Step ***
! ******************************************************************
CALL proposal_step(dim_ens, dim_p, dim_obs, weights, eofV, &

observation, cnt_steps, nsteps, nsteps, &
U_obs_op, U_adjoint_obs_op, U_sqrtQ, U_prodRinvA)

ELSEIF (cnt_steps == nsteps) THEN cntloop
! ******************************************************************
! *** At observation time, apply the EWPF Update ***
! ******************************************************************
CALL equal_weight_step(dim_ens, dim_p, dim_obs, weights, eofV, &

observation, U_obs_op, U_adjoint_obs_op, U_prodRinvA, &
U_solve_invHQHTpR, U_sqrtQ)

!Resets timestep
nsteps = steps

END IF cntloop

Figure 4.2: Extract of PDAF_assimilate_ewpf

respective routine. Obviously, this strategy would make the argument list a bit
longer. However, it would avoid an additional Fortran module and would make it
more explicit, which variables or parameters are required in the routines.

The SANGOMA EWPF implementation was compared to the previously ex-
isting EWPF in PDAF in numerical experiments using the Lorenz-96 model. The
results were found tobe comparable, but not the same due to the use of different
random numbers.
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Chapter 5

Internal structure of the EWPF
code

Chapter 3 explained the main routines of the EWPF code, which are directly
called by the user code, and the model specific call-back routines. In this chap-
ter we now document the internal structure of the EWPF routines and list the
interfaces of all the internal routines that are collectively called by routines ’pro-
posal_step’ and ’equal_weights_step’. Figures 5.1 and 5.2 show the calling trees
of all internal calls of these two routines.

  

equal_weights_step

innerHQHt_plus_R_1

InsertionSort_d
quicksort_d

cb_H

cb_HT

cb_Qhalf

cb_solve_r

Kgain

innerR_1

MixtureRandomNumbers2D

resample

cb_solve_hqht_plus_r

MixtureRandomNumbers1D

NormalRandomNumbers

random_normal()

UniformRandomNumbers1D

random_number()

Figure 5.1: Schematic of the ’equal_weights_step’ routine. Colour decoding: yel-
low routine is called from user code, peach routines are internal fully defined
routines, blue oval routines are internal call-back routines that are model specific
and need to be implemented by the user.
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proposal_step

NormalRandomNumbers

random_normal()

Bprime

cb_H

cb_HT

cb_Qhalf

cb_solve_r

Figure 5.2: Schematic of the ’proposal_step’ routine. The colors are as in Fig.
5.1.

Bprime(d,kgain,QHtR_1d,betan,tt,obsVec,dt_obs)
Compute the nudging term QHtR_1d and random forcing betan to nudge particles
towards future observations. Also return kgain part of the nudging term which is
used in weight adjustment due to the nudging.
integer ( INTPREC) , in tent ( in ) : : t t ! cu r ren t model t t
integer ( INTPREC) , in tent ( in ) : : obsVec ! next observa t ion t ime step
integer ( INTPREC) , in tent ( in ) : : dt_obs ! model t imesteps between observat ions
rea l (REALPREC) , dimension (Ny ,Ne ) , in tent ( in ) : : d ! a vec to r d = ( y−H( x ) ) from p r o p o s a l _ f i l t e r

! Note , t h a t d i s the d i f f e r e n c e between cu r ren t
! p a r t i c l e s ta tes and f u t u r e observa t ion

rea l (REALPREC) , dimension (Nx ,Ne ) , in tent ( out ) : : kgain ! kgain i n the nudging
rea l (REALPREC) , dimension (Nx ,Ne ) , in tent ( out ) : : QHtR_1d ! QH^TR^{−1}∗d
rea l (REALPREC) , dimension (Nx ,Ne ) , in tent ( out ) : : betan ! betan ~ N(0 ,Q ) \ \

resample(weight, x_n)
This subroutine takes the full state and particle array, x_n, and their correspond-
ing weights, weight, and performs universal resampling to return Ne resampled
particles with exactly equal weights of 1/Ne. Importantly, both arrays x_n and
weight are passed to resample sorted such that first Ne_keep particles are to be
used to resample full Ne ensemble.
use sangoma_base ! use sangoma def ined p r e c i s i o n f o r C−Bind
use user_base ! use user def ined parameters
i m p l i c i t none

rea l (REALPREC) , in tent ( inout ) , dimension (Nx ,Ne ) : : x_n ! ensemble p a r t i c l e mat r i x
rea l (REALPREC) , in tent ( inout ) , dimension (Ne ) : : weight ! p a r t i c l e weights
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Kgain(vecIn,vecOut)
Subroutine to apply the operator Kgain to a vector vecIn in observation space
and return the vector vecOut in state space.

use sangoma_base ! use sangoma def ined p r e c i s i o n f o r C−Bind
use user_base ! use user def ined parameters
i m p l i c i t none

rea l (REALPREC) , dimension (Ny ,Ne ) , in tent ( in ) : : vecIn ! mat r i x o f a l l p a r t i c l e s ta tes i n observa t ion space
rea l (REALPREC) , dimension (Nx ,Ne ) , in tent ( out ) : : vecOut ! r e s u l t i n g mat r i x i n f u l l space ( o f a l l p a r t i c l e s )

innerR_1(dim2,vecIn,vecOut)
Subroutine to take an observation array y and return in w an inner product of it
scaled by observation error covariance R−1, i.e. wi = yTi R

( − 1)yi for each input
yi.

use sangoma_base ! use sangoma def ined p r e c i s i o n f o r C−Bind
use user_base ! use user def ined parameters
i m p l i c i t none

integer ( INTPREC) , in tent ( in ) : : dim2 ! second dimension o f the vector ,
! i . e . dim2=1 i f on ly one p a r t i c l e
! or s t a te vec to r i s used and
! dim2 = Ne i f the whole ensemle
! o f p a r t i c l e s i s used

rea l (REALPREC) , dimension (Ny ,Ne ) , in tent ( in ) : : vecIn ! i npu t vec to r ( s )
rea l (REALPREC) , dimension (Ne ) , in tent ( out ) : : vecOut ! r e s u l t i n g inne r product

innerHQHt_plus_R_1(dim2,vecIn,vecOut)
Subroutine to take an observation array y and return in w an inner product of it
scaled by innovation error covariance (HQHT + R)−1, i.e. w = yT (HQHT +
R)−1y.

use sangoma_base ! use sangoma def ined p r e c i s i o n f o r C−Bind
use user_base ! use user def ined parameters
i m p l i c i t none

integer ( INTPREC) , in tent ( in ) : : dim2 ! second dimension o f the vector ,
! i . e . dim2=1 i f on ly one p a r t i c l e
! or s t a te vec to r i s used and
! dim2 = Ne i f the whole ensemle
! o f p a r t i c l e s i s used

rea l (REALPREC) , dimension (Ny , dim2 ) , in tent ( in ) : : vecIn ! i npu t vec to r
rea l (REALPREC) , dimension ( dim2 ) , in tent ( inout ) : : vecOut ! ou tput vec to r

quicksort_d(a, idx_a, na)
Recursive subroutine to sort using the quicksort algorithm.
use sangoma_base , only : REALPREC, INTPREC
i m p l i c i t none

integer ( INTPREC) , in tent ( in ) : : na ! nr or i tems to s o r t
rea l (REALPREC) , dimension (nA ) , in tent ( inout ) : : a ! vec to r to be sor ted
integer ( INTPREC) , dimension (nA ) , in tent ( inout ) : : idx_a ! sor ted indec ies o f a

NormalRandomNumbers(mean, stdev, n, k, phi)
Subroutine to generate, phi, an array of size n×k of normally distributed numbers
with given mean and stdev.
use sangoma_base , only : REALPREC, INTPREC
use random
IMPLICIT NONE

integer ( INTPREC) , INTENT ( IN ) : : n ! f i r s t dimension o f output vec to r
integer ( INTPREC) , INTENT ( IN ) : : k ! second dimension o f output vec to r
rea l (REALPREC) , INTENT ( IN ) : : mean ! mean of normal d i s t r i b u t i o n
rea l (REALPREC) , INTENT ( IN ) : : s tdev ! Standard Dev ia t ion o f normal d i s t r i b u t i o n
rea l (REALPREC) , dimension ( n , k ) , INTENT (OUT) : : ph i ! n , k dimensional normal random numbers
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MixtureRandomNumbers2D(mean, stdev, ufac, epsi, n, k, phi, uniform)
Subroutine to generate, phi, a collection (k of them) of vectors drawn from mixture
(normal and uniform) density.
use random
use sangoma_base , only : REALPREC, INTPREC
i m p l i c i t none

rea l (REALPREC) , in tent ( in ) : : mean ! Mean of normal d i s t r i b u t i o n
rea l (REALPREC) , in tent ( in ) : : s tdev ! Standard d ev i a t i on o f normal d i s t r i b u t i o n
rea l (REALPREC) , in tent ( in ) : : ufac ! ha l f−width o f uni form d i s t r i b u t i o n

! t h a t i s centered on the mean
rea l (REALPREC) , in tent ( in ) : : eps i ! P ropor t ion c o n t r o l l i n g mix ture draw

! i f random_number > eps i then draw from
! uniform , e lse normal

integer ( INTPREC) , in tent ( in ) : : n , k ! f i r s t and second dimension o f output vec to r
rea l (REALPREC) , dimension ( n , k ) , in tent ( out ) : : ph i ! n , k dimensional mix ture random numbers
logical , dimension ( k ) , in tent ( out ) : : un i form ! k d imensional l o g i c a l w i th uni form ( i ) True i f

! ph i ( : , i ) drawn from uni form .
! False i f drawn from normal
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Chapter 6

Summary

This deliverable discussed the implementation of an equivalent weights particle
filter (EWPF). Subroutines for the filter have been coded in Fortran and as Matlab
scripts according to the data model and interface standard defined in Deliver-
able 1.3 of SANGOMA. Based on the documentation of the routines, the different
partners of the project implemented the filter into their respective data assimila-
tion toolboxes.

The implementations showed that the interfaces defined by the data model
are well usable by the different toolboxes of the partners. However, a particular
difficulty was found in the implementations which arises from a particular feature
of the EWPF. Namely, the EWPF performs a nudging step (the ’proposal_step’)
after each time step of the model. This proposal_step utilizes the observational
information from a future time to guide the ensemble of particles toward the ob-
servations assimilated next and ensures that no particle gets a negligible weight.
However, to allow the toolboxes to compute they need to access the whole en-
semble. If the model and toolbox are coupled offline, this implies that the ensem-
ble of models have to write restart files after each time step, which are then read
by the toolbox and modified in the proposal_step. This data exchange through
files results in a significant overhead in computing time, compared to online-
coupling in which the assimilation toolbox has direct access to the ensemble of
particles in memory of the running ensemble. Such a strategy is followed natively
by the EMPIRE and PDAF toolboxes, but also for OAK an online-coupling was
implemented.

Overall, the implementations have shown that the data model is well suited
for the implementation of filter methods, even if they have the complexity of the
EWPF.
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