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Chapter 1

Introduction

The main objective of the SANGOMA project is to provide a coherent and trans-
parent database of the current data assimilation methods suitable for non-linear
and high-dimensional systems such as MyOcean and even more importantly to
advance these probabilistic methods and their applicability to MyOcean systems.
In this living document we have described a number of current ensemble and
particle filter methods which are applicable to MyOcean systems; these include
EnKF, ETKF, EAKF, SEIK, EnSRF, ESTKF, equivalent weight particle filter, aux-
iliary particle filter and adaptive Gaussian mixture filter. We have also included
a selection of resampling techniques to be used with the particle and Gaussian
mixture filters.

This is the basic version of the document and as this is a living document we
aim to update it regularly including any new development in the non-linear proba-
bilistic data assimilation methods, e.g. new ensemble or particle filter methods or
variants of the existing ones which are better suited for MyOcean systems. Thus
members of the project are strongly encouraged to share their knowledge of the
methods they feel should be included in this document.

1.1 The problem

Consider the following nonlinear stochastic discrete-time dynamical system:

x(m) = Mm

(
x(m−1)

)
+ β(m) (1.1)

y(m) = Hm
(
x(m)

)
+ βRo

(m), (1.2)

where x(m) ∈ Rn is the n dimensional state vector (to be estimated), y(m) ∈ Rpm
is the pm � n observation vector,Mm : Rn → Rn is the forward model opera-
tor, Hm : Rn → Rpm is the observation operator, β(m) ∈ Rn is the model noise
(or error) distributed according to a covariance matrix Q(m)and βRo

(m) ∈ Rpm
is the observation noise (or error) distributed according to a covariance matrix
R(m).

We will always denote the time index in the brackets in the upper right corner
of the variables, except for operators such as M and H where it is in the lower
right corner; however, we will omit the time index where it is not necessary to
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ease the notation. We will refer to each ensemble member (or each particle)
by xj where the index j = 1, ..., N and N is the total number of the ensemble
members (or particles).
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Chapter 2

Ensemble Kalman filters

After first proposed by Evensen [1994] the Ensemble Kalman Filter (EnKF) has
become a popular tool for data assimilation because of its computational effi-
ciency, applicability to non-linear dynamics and flexibility [Anderson, 2001, Bengts-
son et al., 2003, Evensen, 2007, Ott et al., 2004, Whitaker and Hamill, 2002].
Since then many ensemble filter variants have been proposed, however, all of
them have the following steps in common:

• The initial ensemble generation step: given an initial state estimate xa,(0)

and initial error covariance matrix Pa,(0) the initial ensemble Xa,(0) ∈ Rn×N
is sampled around the mean xa,(0) with covariance Pa,(0).

• The forecast step: the ensemble members at each time step between the
observations 0 < m ≤ k are updated using the full non-linear dynamical
model:

x
f,(m)
j =Mm

(
x
a,(m)
j

)
+ β(m), (2.1)

where j = 1, ..., N is an ensemble member index.

• The analysis step: at the observation time k the ensemble forecast mean
and covariance are then updated using the available observations to obtain
a new analysis ensemble.

The various ensemble methods differ in the analysis step. Here we will discuss
the current methods applicable for large-dimensional systems, namely, the origi-
nal ensemble square root filter (EnSRF) [Tippett et al., 2003], the ensemble trans-
form Kalman filter (ETKF) [Bishop et al., 2001], the ensemble adjustment Kalman
filter (EAKF) [Anderson, 2001], the singular evolutive interpolated Kalman filter
(SEIK) [Pham et al., 1998], the error subspace transform Kalman filter (ESTKF)
[Nerger et al., 2012], and the original ensemble Kalman filter (EnKF) [Evensen,
1994]. We will present these methods in the square root format and point out the
different ways the analysis ensemble is obtained in each of the methods. Tippett
et al. [2003] gives a uniform framework for EnSRFs, which we follow closely here.
In the rest of this section for ease of notation we omit the time index (·)(k) since
all of the analysis operations are done at time k.

6 Ensemble Kalman filters
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The ensemble methods are based on the Kalman filter [Kalman, 1960], thus
the updated ensemble is given by

xa = xf + K(y −H(xf )) (2.2)
Pa = (I−KH)Pf (2.3)

where K is the optimal Kalman gain given by

K = PfHT(HPfHT + R)−1. (2.4)

The analysis ensemble is then given by

Xa = X
a

+ X′a, (2.5)

where X
a

= (xa, ..., xa) ∈ Rn×N is a matrix with the ensemble analysis mean
in each column and ensemble analysis perturbations are a scaled matrix square
root of

Pa =
X′a (X′a)

T

N − 1
.

To obtain the general square root form we write

X′a(X′a)T =
(

I− PfHT(HPfHT + R)−1H
)

X′f (X′f )T

=
(

I− X′f (X′f )THT(HX′f (X′f )THT + (N − 1)R)−1H
)

X′f (X′f )T

= X′f
(

I− (HX′f )T(HX′f (HX′f )T + (N − 1)R)−1HX′f
)

(X′f )T

= X′f
(

I− ST(SST + (N − 1)R)−1S
)

(X′f )T

= X′f
(

I− STF−1S
)

(X′f )T, (2.6)

where S = (HX′f ) is the ensemble observation matrix and F = S ST + (N − 1) R
is the innovation covariance. Thus to find the updated ensemble analysis pertur-
bations X′a we need to compute the square root of the matrix TTT = I− ST F−1 S,
where T is called a transform matrix. Different ways exist to compute the trans-
form matrix T and here we will discuss the current methods applicable for large-
dimensional systems.

2.1 The original ensemble square root filter (EnSRF)

Here we first perform an eigenvalue decomposition to invert F; that is,

F−1 = ΓSΛ−1S ΓT
S . (2.7)

Thus, the ensemble analysis covariance is given by

X′a(X′a)T = X′f
(

I− STΓSΛ−1S ΓT
SS
)

(X′f )T

= X′f
(

I− STΓSΛ
−1/2
S Λ

−1/2
S ΓT

SS
)

(X′f )T

= X′f
(

I−
[
STΓSΛ

−1/2
S

] [
STΓSΛ

−1/2
S

]T)
(X′f )T

= X′f
(

I− XSXT
S

)
(X′f )T (2.8)
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where XS = STΓSΛ
−1/2
S and by decomposing XS = USΣSZS using SVD gives

X′a(X′a)T = X′f
(

I− [USΣSZS ] [USΣSZS ]T
)

(X′f )T

= X′f
(

I−USΣSΣT
SUT

S

)
(X′f )T

= X′fUS

(
I−ΣSΣT

S

)
UT
S(X′f )T

= X′fUS

(
I−ΣSΣT

S

)1/2 [
X′fUS

(
I−ΣSΣT

S

)1/2]T
(2.9)

Thus ensemble analysis perturbations are given by

X′a = X′fUS

(
I−ΣSΣT

S

)1/2
UT
S , (2.10)

where we have post-multiplied the ensemble analysis perturbations by the or-
thogonal matrix of the left singular vectors UT

S for the analysis ensemble to remain
unbiased as suggested in [Livings et al., 2008, Sakov and Oke, 2008].

The ensemble analysis mean is obtained from

xa = xf + X′fSTΓSΛ−1S ΓT
S

(
y −H(xf )

)
. (2.11)

We note that we can combine both of the ensemble analysis update steps for the
ensemble mean and perturbations into one step as follows,

Xa = X
f

+ X′f (WS + W′
S

)
, (2.12)

where WS = (wS , ...,wS) with

wS = STΓSΛ−1S ΓT
S

(
y −H(xf )

)
(2.13)

and
W′

S = US

(
I−ΣSΣT

S

)1/2
US . (2.14)

Typically, the EnSRF is applied with serial treatment of observations. In this
case, each single observation is assimilated separately. Thus, F reduces to the
scalar F and SST to the scalar S2 . This method is possible if R is diagonal. For
a single observation (m = 1), the matrix XS becomes a vector given by:

XS =
1√
F

ST. (2.15)

All singular values of XS are zero except the first which is its norm,

ΣS =
S√
F

e (2.16)

where e is a vector with N zero elements except the first which is 1. The first
column of US corresponds to normalized vector ST.

USe =
1

S
ST (2.17)
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The square root of the diagonal matrix in 2.10 can be written as a sum of the
identify matrix and a matrix proportional to eeT:(

I−ΣSΣT
S

)1/2
= I− (1−

√
(N − 1)R/F ) eeT (2.18)

Using equation 2.17 and the fact that all columns of U are orthonormal, one
obtains the following expression for W′

S :

W′
S = I−

1−
√

(N − 1)R/F

S2
STS (2.19)

The Kalman gain K = 1
F X′fST in combination with equation 2.19 allows to

compute the analyzed state xa and the ensemble analysis perturbations by:

xa = xf + K
(

y −H(xf )
)

(2.20)

X′a = X′f − αKS (2.21)

where the coefficient α is given by

α =
F

S2
(1−

√
(N − 1)R/F )

=
F

S2

1− (N − 1)R/F

1 +
√

(N − 1)R/F

=
1

1 +
√

(N − 1)R/F

2.2 The ensemble transform Kalman filter (ETKF)

In this method we require the inverse of the observation error covariance ma-
trix R−1 to be readily available, then using Sherman-Morrison-Woodbury identity
[Golub and Van Loan, 1996] we can rewrite TTT as follows,

TTT = I− STF−1S =

(
I +

1

N − 1
STR−1S

)−1
. (2.22)

We normalise the forecast observation ensemble perturbation matrix so that the
observations are dimensionless with standard deviation one [Livings, 2005],

S̃ =
1√
N − 1

R−1/2S, (2.23)

thus S̃S̃
T

= SR−1ST. Substituting (2.23) into (2.22) we obtain

TTT =
(

I + S̃
T

S̃
)−1

. (2.24)

Next we perform a SVD on the scaled forecast ensemble observation perturbation
matrix,

S̃
T

= UTΣTVT
T . (2.25)
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By using a singular value decomposition we avoid performing the multiplication in
S̃S̃

T
thus preventing possible loss of accuracy due to rounding errors. Thus, we

have

TTT =
(

I + (UTΣTVT
T )(UTΣTVT

T )T
)−1

=
(

I + UTΣTΣT
TUT

T

)−1
= UT

(
I + ΣTΣT

T

)−1
UT
T . (2.26)

The ensemble analysis perturbations are then given by

X′a = X′fUT

(
I + ΣTΣT

T

)−1/2
UT
T . (2.27)

and the ensemble mean is updated via

xa = xf + K(y −H(xf ))

= xf +
1√
N − 1

X′fUT (ΣT
TΣT + I)−1ΣTVT

TR−1/2(y −H(xf )), (2.28)

where

K = X′fST(SST + (N − 1)R)−1

=
1√
N − 1

X′f S̃
T

R1/2R−1/2(S̃S̃
T

+ I)−1R−1/2

=
1√
N − 1

X′f S̃
T

(S̃S̃
T

+ I)−1R−1/2

=
1√
N − 1

X′fUTΣTVT
T (VTΣT

TΣTVT
T + I)−1R−1/2

=
1√
N − 1

X′fUT (ΣT
TΣT + I)−1ΣTVT

TR−1/2. (2.29)

Again we can combine both of the ensemble analysis update steps for the
ensemble mean and perturbations into one step as follows,

Xa = X
f

+ X′f (WT + W′
T

)
, (2.30)

where WT = (wT , ...,wT ) with

wT =
1√
N − 1

UT (ΣT
TΣT + I)−1ΣTVT

TR−1/2(y −H(xf )) (2.31)

and
W′

T = UT

(
I + ΣTΣT

T

)−1/2
UT
T . (2.32)

2.3 The ensemble adjustment Kalman filter (EAKF)

In this method as in the ETKF we require the inverse of the observation error co-
variance matrix R−1 to be readily available, then as in the ETKF using Sherman-
Morrison-Woodbury identity [Golub and Van Loan, 1996] and scaling the ensem-
ble forecast observation perturbations we can rewrite TTT as follows,

TTT =
(

I + S̃S̃
T
)−1

. (2.33)

10 Ensemble Kalman filters
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The same way as in the ETKF we perform a singular value decomposition on the
scaled forecast ensemble observation perturbation matrix

S̃
T

= UAΣAVT
A, (2.34)

and additionally in the EAKF we also use eigenvalue decomposition to obtain

Pf = ZAΓAZT
A. (2.35)

Then the ensemble analysis perturbations are given by

X′a =
1√
N − 1

X′fUA

(
I + ΣAΣT

A

)−1/2
Γ
−1/2
A ZT

AX′f . (2.36)

We note that the EAKF ensemble perturbation analysis given by (2.36) is the
same as applying the orthogonal matrix Γ

−1/2
A ZT

AX′f instead of the orthogonal
matrix UT in the ETKF ensemble analysis perturbations given by (2.27) [Tippett
et al., 2003].

The ensemble mean analysis is given the same as in the ETKF, and the en-
semble mean is updated via

xa = xf + K(y −H(xf ))

= xf +
1√
N − 1

X′fUA(ΣT
AΣA + I)−1VT

AR−1/2(y −H(xf )). (2.37)

Again we can combine both of the ensemble analysis update steps for the
ensemble mean and perturbations into one step as follows,

Xa = X
f

+ X′f (WA + W′
A

)
, (2.38)

where WA = (wA, ...,wA) with

wA =
1√
N − 1

UA(ΣT
AΣA + I)−1VT

AR−1/2(y −H(xf )) (2.39)

and

W′
A = UA

(
I + ΣAΣT

A

)−1/2
Γ
−1/2
A ZT

AX′f . (2.40)

Due to the large computational cost to compute the decomposition 2.35, the
vector update of the EAKF is not applicable for large-scale systems. For this
reason, it is typically applied with serial observation processing as the EnSRF.

2.4 The singular evolutive interpolated Kalman filter (SEIK)

The SEIK filter, while similar to the ETKF, has some important differences. In par-
ticular, the SEIK filter performs the analysis step in the ensemble error subspace.
This is achieved by defining a matrix

L = XfA, (2.41)

Non-linear data assimilation methods V0 report 11
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where A ∈ RN×N−1 is a matrix with full rank and zero column sums. Previously,
matrix A was always identified as

A =

[
IN−1×N−1

01×N−1

]
− 1

N
[1N×N−1] , (2.42)

where 0 is a matrix whose elements are equal to zero and 1 is a matrix whose
elements are equal to one [Nerger et al., 2012]. Matrix A implicitly subtracts the
ensemble mean when the matrix L is computed. In addition, A removes the last
column of X′f . Thus L is an N ×N − 1 matrix that holds the first N − 1 ensemble
perturbations. The product of the square root matrices in the ensemble error
space becomes now

TTT =
(

(N − 1)ATA + (HL)TR−1(HL)
)−1

. (2.43)

In contrast to the ETKF, TTT is of size N − 1 × N − 1. The square root T is
obtained from Cholesky decomposition of (TTT)−1. Then, the ensemble analysis
perturbations are given by

X′a =
√
N − 1 LTΩ, (2.44)

where columns of Ω ∈ RN×N−1 are orthonormal and orthogonal to the vector
(1, . . . , 1)T. Ω can be either random or deterministic rotation matrix. However, if a
deterministic Ω is used then Nerger et al. [2012] shows that a symmetric square
root of TTT, like in the ETKF, should be used for a more stable ensemble.

The ensemble analysis mean is given then by

xa = xf + LTTT(HL)TR−1
(

y −H(xf )
)
. (2.45)

Again we can combine both of the ensemble analysis update steps for the
ensemble mean and perturbations into one step as follows,

Xa = X
f

+ L
(
WK + W′

K

)
, (2.46)

where WK = (wK , ...,wK) with

wK = LTTT(HL)TR−1
(

y −H(xf )
)
, (2.47)

and
W′

K = TΩ. (2.48)

2.5 The error-subspace transform Kalman filter (ESTKF)

Recently, the error-subspace transform Kalman filter (ESTKF) has been derived
from the SEIK filter [Nerger et al., 2012]. The ESTKF exhibits better properties
than the SEIK filter, like a minimum ensemble transformation like the ETKF. How-
ever, unlike the ETKF the ESTKF computes the ensemble transformation in the

12 Ensemble Kalman filters

http://www.awi.de/
http://www.data-assimilation.net/


Deliverable 3.1

error subspace spanned by the ensemble rather than using the ensemble repre-
sentation of it. Similar to the SEIK filter, a projection matrix Â ∈ RN×N−1 is used
whose elements are defined by

Âi,j :=


1− 1

N
1

1√
N
+1

for i = j, i < N

− 1
N

1
1√
N
+1

for i 6= j, i < N

− 1√
N

for i = N

(2.49)

With this projection, the basis vectors for the error subspace are given by

L = Xf Â, (2.50)

As for matrix Ω in the SEIK filter, the columns of Matrix Â are orthonormal and
orthogonal to the vector (1, . . . , 1)T. When the matrix L is computed, the mul-
tiplication with Â implicitly subtracts the ensemble mean. Further, Â subtracts
a fraction of the last column of X′f from all other columns. In this way, the last
column of X′f is not just dropped as in the SEIK filter, but its information is dis-
tributed over the other columns. The product of the square root matrices in the
error subspace becomes now

TTT = ((N − 1)I + (HL)TR−1(HL))−1. (2.51)

By performing the SVD of the symmetric matrix (TTT)−1 = UEΣEUT
E we obtain

the symmetric square root
T = UEΣ

−1/2
E UT

E . (2.52)

The matrix of ensemble analysis perturbations is given by

X′a =
√
N − 1 LTÂ

T
. (2.53)

The ensemble analysis mean is given then by

xa = xf + LUEΣ−1E UT
E(HL)TR−1

(
y −H(xf )

)
. (2.54)

Again we can combine both of the ensemble analysis update steps for the
ensemble mean and perturbations into one step as follows,

Xa = X
f

+ L
(
WE + W′

E

)
, (2.55)

where WE = (wE , ...,wE) with

wE = UEΣ−1E UT
E(HL)TR−1

(
y −H(xf )

)
, (2.56)

and
W′

E = UEΣ
−1/2
E UT

EÂ. (2.57)

Compared to the SEIK filter, both the matrices A and Ω are replaced by Â
in the ESTKF. In addition, the ESTKF uses the symmetric square root of TTT.
The use of Â leads to consistent projection onto the error subspace and back
onto the state space, while the symmetric square root ensures that the minimum
transformation is obtained. It is also possible to apply the ESTKF with a random
ensemble transformation. For this case, the matrix Â in equations (2.53) and
(2.57) is replaced by a random matrix with the same properties as the determin-
istic hatA.
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2.6 The original ensemble Kalman filter (EnKF)

The original EnKF as introduced by Evensen [1994] is the only method discussed
here with perturbed observations, that is

Y = (y1, y2, ..., yN ) ∈ Rm×N , (2.58)

where perturbed observations are given by yj = y + εj , j = 1, ..., N with the
added noise drawn from some distribution with mean y and covariance R. Thus
the observational noise (perturbation) matrix

Y′ = (ε1, ε2, ..., εN ) ∈ Rm×N (2.59)

forms the ensemble representation of the observational errors as follows

Re =
Y′Y′T

N − 1
. (2.60)

Using an ensemble representation of the observation errors results in a modified
innovation covariance

F̂ = SST + Y′Y′T (2.61)

and a modified transform matrix

T̂T̂
T

= I− STF̂
−1

S. (2.62)

We can decompose F̂ using an eigenvalue decomposition but this is costly ifm�
N [Evensen, 2003]. Instead, if forecast and observation errors are uncorrelated
(as they are assumed to be), i.e.

SY′T ≡ 0, (2.63)

then
F̂ = SST + Y′Y′T = (S + Y′)(S + Y′)T (2.64)

and we can use SVD to decompose S + Y′ = UFΣFVF , hence

F̂ = UFΣFΣT
FUT

F . (2.65)

This has a much smaller computational cost [Evensen, 2003]. Then

T̂T̂
T

= I− STUFΣ−1F (Σ−1F )TUT
FS

= I− GFΓFZF (GFΓFZF )T

= I− GFΓFΓT
FGT

F

= GF

(
I− ΓFΓT

F

)
GT
F , (2.66)

where we have used SVD decomposition of STUFΣ−1F = GFΓFZF . Thus the
ensemble analysis perturbations are given by

X′a = X′fGF

(
I− ΓFΓT

F

)1/2
GT
F (2.67)
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and the ensemble analysis mean is given by

xa = xf + X′fSTUFΣ−1F (Σ−1F )TUT
F (Y −H(Xf )). (2.68)

Again we can combine both of the ensemble analysis update steps for the
ensemble mean and perturbations into one step as follows,

Xa = X
f

+ X′f (WF + W′
F

)
, (2.69)

where WF = (wF , ...,wF ) with

wF = STUFΣ−1F (Σ−1F )TUT
F (Y −H(Xf )), (2.70)

and
W′

F = GF

(
I− ΓFΓT

F

)1/2
GT
F . (2.71)

Non-linear data assimilation methods V0 report 15

http://www.awi.de/
http://www.data-assimilation.net/


Deliverable 3.1

Chapter 3

Particle filters

Particle filters, like ensemble methods, are variants of the Monte Carlo methods
in which the probability distribution of the model state given some observations is
approximated by a number of particles; however, unlike Kalman filter based en-
semble methods, particle filters are fully non-linear data assimilation techniques.
While particle filters are not a new concept, until very recently they have been
deemed to be computationally unfeasible for large-dimensional systems due to
the filter degeneracy problem. However, recently there has been a new devel-
opment in the field and particle filter variants have emerged which have been
shown to work for large dimensional systems with a limited number of particles.
These methods exploit the future observational information by relaxing particles
towards the future observations. In this document we will consider two such vari-
ants of the particle filters: the equivalent weights particle filter [Van Leeuwen,
2010, 2011, Ades and van Leeuwen, 2012] and the auxiliary particle filter [Pitt
and Shephard, 1999]. Another interesting particle filter for high-dimensional sys-
tems, the so called implicit particle filter, is not discussed here as it needs a
4D-Var in each particle.

At a given time k a probability distribution function (pdf) represented by N
particles or ensemble members is given by a sum of delta functions centred on
the particles,

p
(

x(k)
)

=
1

N

N∑
i=1

δ
(

x(k) − x
(k)
i

)
, (3.1)

where x(k) ∈ Rn is a n-dimensional state of the system that has been integrated
forward using the stochastic forward model over k time steps starting at time zero.
Time k is when we have a current set of observations with the last observation
set at time 0. The stochastic forward model between observations 0 ≤ m < k for
each particle j = 1, ..., N is given by

x
(m)
j =Mm

(
x
(m−1)
j

)
+ β

(m)
j , (3.2)

where β
(m)
j ∈ Rn are random terms representing the model error distributed

according to a given covariance matrix Q andMm : Rn → Rn is the deterministic
model from time m− 1 to m. Thus model state transition from time m− 1 to m is
fully described by the transition density given by

p
(

x
(m)
j |x

(m−1)
j

)
= N

(
Mm

(
x(m−1)

)
,Q
)
. (3.3)
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However, instead of (3.2) and (3.3) a modified forward model is also used to
nudge particles towards the future observations and is given by

x
(m)
j =Mm

(
x
(m−1)
j

)
+ β̃

(m)
j + Υ

[
y(k) −Hk

(
x
(m−1)
j

)]
, (3.4)

where β̃
(m)
j ∈ Rn are random terms representing the model error distributed ac-

cording to a given covariance matrix Q̃,Mm is the same deterministic model as
in equation (3.2), Υ is a relaxation matrix which we will chose later, y(k) ∈ Rpk is
the vector of pk observations at time k and Hk : Rn → Rpk is the observation op-
erator mapping model space in to observation space. Note that the observations
y(k) are at later time k ≥ m. The model error covariance matrices are usually
assumed to be equal, i.e. Q̃ = Q. The modified transition density is given by

q
(

x
(m)
j |x

(m−1)
j , y(k)

)
= N

(
Mm

(
x(m−1)

)
+ Υ

[
y(k) −Hk

(
x(m−1)

)]
,Q
)
. (3.5)

Using Bayes theorem and the Markovian property of the model, the full posterior
at observation time k is written as

p
(

x
(k)
j |y

(k)
)

=
N∑
j=1

w
(k)
j δ

(
x(k) − x

(k)
j

)
(3.6)

where the weights wkj are given by

w
(k)
j ∝ p

(
y(k)|x(k)j

) p
(

x
(k)
j |x

(k−1)
j

)
q
(

x
(k)
j |x

(k−1)
j , y(k)

)w(k−1)
j (3.7)

and wk−1j are all the weights from all time steps up to time k − 1, i.e. fractions
p
(
x(m)
j |x(m−1)

j

)
q
(
x(m)
j |x(m−1)

j ,y(k)
) for each time 0 ≤ m < k. The conditional pdf p

(
y(k)|x(k)

)
is

the pdf of the observations given the model state x(k) which is often taken to be
Gaussian

p
(

y(k)|x(k)
)

= B exp

[
−1

2

(
y(k) −Hk

(
x(k)
))T

R−1
(

y(k) −Hk
(

x(k)
))]

. (3.8)

3.1 The equivalent-weights scheme

In the equivalent weights scheme [Van Leeuwen, 2010, Ades and van Leeuwen,
2012] we aim to ensure that equally significant particles are picked from the pos-
terior density. In this scheme we perform the following steps:

1. Before observation time k for each time step 0 ≤ m < k and for each
particle j = 1, ..., N :

(a) Advect the model state in time

x
(m)
j =Mm

(
x
(m−1)
j

)
+ β̃

(m)
j + Υ

[
y(k) −Hk

(
x
(m−1)
j

)]
(3.9)
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where Υ = Q(H(k))T
[
H(k)Q(H(k))T + R

]−1
with Q being the covari-

ance matrix of model errors, R the covariance matrix of observation
errors, and H(k) the linearised version of the observation operator Hk.

(b) Compute weights

w
(m)
j = w

(m−1)
j

p
(

x
(m)
j |x

(m−1)
j

)
q
(

x
(m)
j |x

(m−1)
j , y(k)

) , (3.10)

where both transition densities are assumed to be Gaussian and are
calculated according to

p
(

x
(m)
j |x

(m−1)
j

)
= exp

[
−1

2

(
Υ
[
y(k) −H(k)x

(m)
j

]
+ β̃

(m)
j

)T
Q−1(

Υ
[
y(k) −H(k)x

(m)
j

]
+ β̃

(m)
j

)]
(3.11)

q
(

x
(m)
j |x

(m−1)
j , yk

)
= exp

[
−1

2

(
β̃
(m)
j

)T
Q−1β̃

(m)
j

]
. (3.12)

2. At observation time k:

(a) Calculate the maximum weight value for each particle

Cj = − logw
(k−1)
j +

1

2

[
y(k) −Hk

(
Mk

(
x
(k−1)
j

))]T
[

H(k)Q
(

H(k)
)T

+ R

]−1 [
y(k) −Hk

(
Mk

(
x
(k−1)
j

))]
.

Then choose a target weight C such that 80% (or any other suitable
percentage) of particles can reach this weight, i.e. that 80% of Cj are
less than C.

(b) Find the deterministic particle analysis update (for the particles which
can reach the target weight C) via

x̌
(k)
j =Mk

(
x
(k−1)
j

)
+ αjΥd

(k)
j , (3.13)

where

Υ = Q
(

H(k)
)T [

H(k)Q
(

H(k)
)T

+ R

]−1
(3.14)

αj = 1−

√
1− bj

aj
(3.15)

aj =
1

2

(
d
(k)
j

)T
R−1H(k)Υd

(k)
j (3.16)

bj =
1

2

(
d
(k)
j

)T
R−1d

(k)
j − C − logw

(k−1)
j (3.17)

d
(k)
j = y(k) −H(k)

(
x
(k)
j

)
. (3.18)
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(c) Perturb each particle with random perturbations

x
(k)
j = x̌

(k)
j + dβ

(k)
j (3.19)

where the perturbation dβ
(k)
j is drawn from a mixture of uniform and

Gaussian distributions, given by

dβ ∼ (1− ε)Q1/2U(−γU I,+γU I) + εN (0, γ2NQ). (3.20)

Choosing ε = 0.001/N ensures that we mainly sample from the uni-
form distribution, but the possibility to sample from the Gaussian dis-
tribution ensures the support of the proposal density is at least equal
to the support of the model prior. Other parameters are chosen to be
as follows:

γU = 10−5 (3.21)

γN =
2n/2εγnU

πn/2(1− ε)
. (3.22)

(d) Calculate the full weights at time k

w
(k)
j = w

(k−1)
j

p
(

x
(k)
j |x

(k−1)
j

)
p
(

y(k)|x(k)j
)

q
(

x
(k)
j |x

(k−1)
j , y(k)

) . (3.23)

taking the final perturbation into the account using the transition den-
sity

q
(

x
(k)
j |x

(k−1)
j , y(k)

)
= (1−ε)Q1/2U(−γU I,+γU I)+εN (0, γ2NQ). (3.24)

(e) Resample to obtain a full ensemble again, e.g. using universal resam-
pling. After resampling the weights of the resampled particles are set
to be equal, i.e. w(k)

j = 1/N .

3.2 The auxiliary particle filter

The auxiliary particle filter avoids filter degeneracy at time k by performing the
weighting and corresponding resampling at a previous observation time t = 0.

1. Integrate each particle forward from time 0 to k with simplified dynamics
(e.g. no model noise, simpler dynamics)

x
(k)
j = M̃m

(
x
(k−1)
j

)
, (3.25)

where M̃m is a simplified dynamical model at time 0 ≤ m ≤ k.

2. Weight each particle with the new observations

w
(k)
j ∝ p̃

(
y(k)|x(k)j

)
. (3.26)

These weights are called first stage weights or simulation weights.
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3. Resample particles at time 0 with these weights, and use this ensemble as
a representation of the proposal density by integrating it forward to k with
the full stochastic model

x
(m)
j =Mm

(
x
(m−1)
j

)
+ β

(m)
j , (3.27)

whereM : Rn → Rn is a deterministic model and β is a model noise.

4. Reweigh the members with weights

w
(k)
j =

1

A

p
(

y(k)|x(k)j
)

p̃
(

y(k)|x(k)j
) , (3.28)

where A = w(k) is the normalization factor over all ensemble members at
time k.

5. A resampling step can be done but is not necessary since the actual re-
sampling is done at step 3.

It should be noted that 2N integrations have to be performed with this method,
one ensemble integration to find the proposal, and one for the actual pdf. If adding
the stochastic noise is not expansive, step 1. can be done with the stochastic
model, which comes down to doing the Sequential Importance Sampling twice.
One can imagine to do it even more times, zooming in on the likelihood, but at a
cost of performing more and more integrations of the model.
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Chapter 4

Adaptive Gaussian mixture filter

In Gaussian mixture filters [Hoteit et al., 2008] the prior distribution is approx-
imated by a mixture density [Silverman, 1986] where each ensemble member
forms the centre of a Gaussian density function. The mixture density including
weights is propagated through the dynamical system and updated according to
Bayes’ rule on the arrive of new observations [Stordal et al., 2011].

In a Gaussian mixture filter we approximate the density function by

p(x) =
N∑
j=1

wjφ(x− xj ,P), (4.1)

where {xj}Nj=1 is a sample of N particles (ensemble members), φ(x,P) denotes
a zero mean multivariate Gaussian kernel density with covariance matrix P, and
{wj}Nj=1 are scalar weights so that

∑N
j=1wj = 1. Note that each particle rep-

resents the mean of a Gaussian kernel and that the uncertainty associated with
each particle is given by the covariance of that Gaussian kernel [Stordal et al.,
2011].

Differently to the EnKF and similarly to the SEIK filter in the Gaussian mixture
filter the analysis step is performed in the error subspace by defining a matrix

T̃ =

[
IN−1×N−1

01×N−1

]
− 1

N − 1
[1N×N−1] , (4.2)

where 0 is a matrix whose elements are equal to zero and 1 is a matrix whose
elements are equal to one [Nerger et al., 2012]. Thus applying the matrix T̃ to
the ensemble matrix, denoted as X = {xj}Nj=1,

L = XT̃ (4.3)

implicitly subtracts the ensemble mean and in addition removes the last column of
X, thus L is an N×N−1 matrix that holds the first N−1 ensemble perturbations.
Thus in the Gaussian mixture filter the ensemble covariance P is defined as

P = h2LULT, (4.4)

where U =
(

T̃
T

W−1T̃
)−1

is the matrix of the transformed particle weights and
h is a small tuning parameter called bandwidth. The optimal choice of the band-
width h is hopt ∼ N−1/5 if we are only interested in the marginal properties of the
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individual components of x; however, since the choice of the bandwidth parame-
ter determines the magnitude of the Kalman update step, it might be beneficial to
choose h > hopt to reduce the risk of filter divergence [Stordal et al., 2011]. Thus
the parameter h is treated as the design parameter and is defined by the user.

To solve the problem defined by equations (1.1) and (1.2) we perform the
following steps:

1. At initial time m = 0

(a) Choose the bandwidth parameter h and the ensemble size threshold
Nc.

(b) Draw N independent identically distributed (iid) particles,
{

x
a,(0)
j

}N
j=1

,

from the initial density p
(
x(0)
)
.

(c) Set initial weights to be

w(0) =
{
w

(0)
j

}N
j=1

= 1/N

or in matrix form W0 = diag(w0) where weights are on the diagonal of
the W(0) matrix with other entries in the matrix being zero.

(d) Obtain ensemble perturbations by transforming the ensemble mem-
bers

La,(0) = Xa,(0)T̃,

where T̃ is defined as in eq. (4.2) and obtain transformed weights from

Ua,(0) =

(
T̃

T
(

W(0)
)−1

T̃

)−1
.

(e) Construct the ensemble covariance matrix

P(0) = h2La,(0)Ua,(0)
(

La,(0)
)T

,

where h is the bandwidth parameter.

2. Time evolution, m > 0,

(a) Forward the ensemble in time to the next time the observations are
available

Xf,(m) =M
(

Xa,(m−1)
)

(4.5)

where Xa,(m−1) represents the ensemble analysis state at previous ob-
servation time m − 1 and Xf,(m) represents ensemble forecast at cur-
rent observation time m.

(b) Update ensemble members at time m using the ensemble Kalman
filter update equations (for clarity the time index m is dropped unless it
is different from m):

Lf = Xf T̃ (4.6)
Pf = LfUa,(m−1)(Lf )T (4.7)
K = PfHT(HPfHT + R)−1 (4.8)

Xa = Xf + K
(

y1p×1 −H(Xf )
)

(4.9)
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(c) Update ensemble covariance matrix at time m using the ensemble
Kalman filter update equations (for clarity the time indexm is dropped):

La = XaT̃ (4.10)

U =
(

Ua,(m−1) + (HL)TR−1HL
)−1

(4.11)

B = IN−1 + U(HLf )TR−1
[
y1−HXf

]
T̃ (4.12)

Ua =
(

BTU
−1

B
)−1

(4.13)

Pa = LaUa(La)T. (4.14)

(d) Update the weights for each particle j = 1, ..., N at time m:

w̃
(m)
j = w

(m−1)
j exp

(
−1

2

[
y(m) −H(m)x

(m)
j

]T
(H(m)Pf,(m)H(m) + R(m))−1

[
y(m) −H(m)x

(m)
j

])
.(4.15)

(e) Normalise the weights

w
(m)
j =

w̃
(m)
j∑N

i=1 w̃
(m)
i

. (4.16)

(f) Until above step the filter described here is the standard Gaussian mix-
ture filter. The adaptive part of the filter is included from Stordal et al.
[2011], which has been shown to avoid the filter divergence due to
collapse thus allowing to choose smaller values of the bandwidth pa-
rameter h. However, if the standard version of the method is required
then this step should be ignored.
In the adaptive Gaussian mixture filter we interpolate the original anal-
ysis weights in equation (4.16) with a uniform weight as follows,

wαj = αwj + (1− α)N−1, (4.17)

where α = NeffN
−1 is the adaptive parameter and Neff = 1∑N

l=1(wl)2

is the effective ensemble size.

(g) Resample. If Neff < Nc
1

i. Sample new set of particle indices in array I from the weights
using one of the resampling methods in Appendix A.

ii. Draw a random number ξj ∼ N (0, 1) for j = 1, ..., N .

iii. Sample new particles x
a,(m)
j = x

a,(m)
I(j) +

(
Pa,(m)

)1/2
ξj .

iv. Reset the weights W(m) = W(0) to the weights at the initial time.

1If using standard Gaussian mixture filter then define the effective ensemble size as Neff =
1∑N

l=1
(wl)

2 .
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If Neff ≥ Nc then don’t perform resampling. The particles remain
unchanged Xa,(m) and weights are reset to the initial weights W(m) =
W(0). Note that, since the results of the method will be affected by how
often resampling is performed, resampling could be done at each as-
similation time or any other time frequency; also the ensemble number
threshold Nc could be made time dependent [Stordal et al., 2011].
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Chapter 5

Four dimensional ensemble
methods

Recently there has been a lot of attention given to fusing variational and ensemble
methods to overcome shortcomings of each of the methods individually and to
combine their benefits; comparisons of variational or ensemble methods can be
found for example in Lorenc [2003], Kalnay et al. [2007], Fairbairn et al. [2014].
The main benefits of using both ensemble and variational frameworks in one
method are that background error covariances are flow dependent (and in hybrid
methods full rank), localization is done correctly in the state space, combined
methods is more robust than pure EnKF for limited ensemble sizes and large
model errors, see Buehner et al. [2010a,b], Fairbairn et al. [2014] for tests and
comparisons of the different methods.

Currently there is the alpha control variable method, ensemble smoother meth-
ods and ensemble of data assimilation methods (EDA). Alpha control variable
method [Lorenc, 2003, Buehner, 2005, Wang et al., 2008a,b] is a hybrid method
(we follow recommendations of Lorenc [2013] on referring to EnVar DA meth-
ods) concerned with incorporating ensemble perturbations directly into variational
cost function through extended control variable thus introducing a flow depen-
dence into the static variational background error covariances; this is done us-
ing "errors of the day" from an ensemble. Still in its core alpha control variable
method remains a variational method and requires the adjoint model. Ensem-
ble smoothers [Van Leeuwen and Evensen, 1996, Evensen and Van-Leeuwen,
2000] use EnKF to obtain priors of the ensemble solution and covariances and
use them to compute the smoothed solution with either an EnKF method or vari-
ational minimization. EDA methods couple ensemble and variational methods
(mainly 4DVar) without the need of adjoint models. EDA methods have started
to develop in atmospheric and oceanographic sciences only in the last 10 years,
with the maximum likelihood ensemble filter (MLEF) [Zupanski, 2008], 4DEnKF
[Hunt et al., 2004, Fertig et al., 2007] and the four-dimensional ensemble-based
variational data assimilation method (4DEnVar) [Liu et al., 2008, Liu and Xiao,
2013]. Since Sangoma project is concerned with data assimilation methods
which do not involve adjoints and tangent linear models, in this chapter we will
give an overview of three such methods, the ensemble smoother (ES), ensemble
Kalman smoother (EnKS) and a variant of EDA, the 4DEnVar method.
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5.1 Ensemble Smoother

Ensemble Smoother (ES) was proposed by Van Leeuwen and Evensen [1996]
and also described in Evensen [2007]. ES computes the analysis using all of the
available observations over a time window t0,...,I ; it finds an approximate update
using the usual EnKF update equation

X̃
a
k = X̃

f
k + K̃

(
Ỹ −HX̃

f
k

)
1, (5.1)

where the ensemble forecast matrix of the joint state from t0 to tI is given by

X̃
f
I =


X0

Xf
1

. . .
Xf
m(I)

 , (5.2)

and the corresponding space-time ensemble covariance matrix is given by

P̃
f

=
X̃′f

(
X̃′f
)T

N − 1
. (5.3)

Kalman gain is given by

K̃ = H̃
T

P̃
f
(

H̃
T

P̃
f
H̃ + R̃

)−1
, (5.4)

observation matrix Ỹ, holding all observations over the time window, is given by

Ỹ =

 Y1
...

YI

 , (5.5)

observation operator over the time window is given by

H̃ =

 H1
...

HI

 , (5.6)

and observation error covariance matrix over the time window is given by

R̃ =

 R1

. . .
RI

 . (5.7)

Defining innovation matrix as

D = Ỹ − H̃X̃
f
I

2, (5.8)
1Note, all the variables with ·̃ are concatenated space-time variables.
2X̃

f

I is a matrix holding ensemble forecasts at the end of time window tI .
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with associated innovation covariance matrix given by

F̃ = S̃S̃
T

+ (N − 1)R̃, (5.9)

the measurements of the ensemble perturbations as

S̃ = H̃X̃′f
I , (5.10)

we can write the analysis in 5.1 as

X̃
a
I = X̃

f
I W̃ES (5.11)

where the weight matrix is given by W̃ES =
(

I + S̃
T

F̃
−1

D̃
)

and find the solution
using one of the forms of the square root filter defined in Chapter ??.

5.2 Ensemble Kalman Smoother

The Ensemble Smoother in the previous section used all available observations
in the assimilation window to compute the analysis, an alternative approach pre-
sented in Evensen and Van-Leeuwen [2000] is to assimilate observations se-
quentially in time, this methods is called The Ensemble Kalman Smoother (EnKS).
There are various ways to implement EnKS and here we follow the description
presented in Evensen [2007].

Starting from the initial ensemble X0 at the beginning of the data assimilation
window, t0, we advect the ensemble forward in time using the dynamical model
equations in 1.1 to first set of observations at time tm(1), where m = 0, ..., L is the
forward model time level index, L is the total number of forward model time levels
and additionally k = 1, ..., I is the observation index with I being the total number
of time levels at which observations are available. We then concatenate all the
ensemble forecasts from initial time to the time of the first observation

X̃
f
1 =


X0

Xf
1

. . .
Xf
m(1)

 . (5.12)

Using the ES update 5.11 with 5.12 and using the first set of observations y1
under the assumption of a Gaussian pdf for the predicted ensemble we get

X̃
a
m,(1) = X̃

f
m(1)W̃1, (5.13)

where as in the ES we have

W̃1 =
(

I + S̃
T

F̃
−1

D̃
)

(5.14)

S̃1 = H̃1X̃′f
m(1) (5.15)

F̃1 = S̃1S̃
T
1 + (N − 1)R̃m(1) (5.16)

D̃1 = Ỹ1 − H̃1X̃
f
m(1). (5.17)

Non-linear data assimilation methods V0 report 27

http://www.awi.de/
http://www.data-assimilation.net/


Deliverable 3.1

The update in 5.11 is identical to the ES update in the case where the time in-
terval covers t ∈ [t0, t1], and the data are all contained in y1. In the EnKS X̃

a
1

serves as the prior for the continued ensemble integration until the next obser-
vation time. Hence, at time tm assimilating kth observation set we define the
ensemble forecast matrix as

X̃
f
m(k) =


X̃
a
m(k−1)

Xf
m(k−1)+1

. . .
Xf
m(k)

 , (5.18)

where X̃
f
m(k) contains all ensemble forecasts (and past analysis) from the initial

time to the current observation time tm(k). Then the analysis update can again
be compute again using 5.13

X̃
a
m(k) = X̃

f
m(k)W̃k, (5.19)

where
W̃k =

(
I + S̃

T
k F̃
−1
k D̃k

)
. (5.20)

We note, that the ensemble in 5.19 has been update using all previous observa-
tions y1.y2, ... yk.

5.3 4DEnVar

The 4DEnVar as developed by Liu et al. [2008] is a method where the 4D back-
ground error covariances are estimated from the EnKF ensemble members to
produce a 4D analysis with the variational data assimilation approach, but with-
out the need for tangent linear or adjoint versions of the forecast model Buehner
et al. [2010a]. The background perturbations are used to precondition the 4DVar
control variables,

xa = xb + X′
bw (5.21)

where w is the control variable and defining innovations as

d = H (xb)− y, (5.22)

the cost function in control variable space is written as

J(w) =
1

2
wTw +

1

2

I∑
i=0

(
HiMiX

′
b,iw + di

)T
R−1i

(
HiMiX

′
b,iw + di

)
(5.23)

where I is the total number of time levels at which the observations are available.
The gradient of 5.23 is given by

∇wJ = w +
I∑
i=0

X′T
b,iM

T
i HT

i R−1i
(
HiMiX

′
b,iw + di

)
. (5.24)
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and although 4DEnVar can be implemented by calculating the gradient using 5.24
the tangent linear model M and its adjoint MT have to be employed in the 4DVar
minimization. To avoid this the idea of EnKF is adopted and the perturbation in
observations space is introduced

HMX′
b ≈

1√
N − 1

[H (M (xb1))−H (M (xb)) , ...,H (M (xbN ))−H (M (xb))] .

(5.25)
The gradient of the cost function 5.24 then becomes

∇wJ = w +
I∑
i=0

(
HiMiX

′
b,i

)T
R−1i

(
HiMiX

′
b,iw + di

)
, (5.26)

thus avoiding the adjoint model MT by the transformation of the the background
error to observations space in 5.25. In eqn. 5.26 the background error in ob-
servation space is calculated just once using ensemble forecasts outside the
minimzation iteration (this greatly reduces the computational and coding costs
in comparison to 4DVar). Further, since HiMiX′

b,i is a pi × N dimensional ma-
trix (where pi is the number of spatial observations at time i, the calculation of
HiMiX′

b,i or (HiMiX′
b,i)

T is not expensive and the reduction of the dimensions in
4DEnVar control variable makes the minimization cost even less Liu et al. [2008].

While the background error covariances in 4DEnVar are fully flow dependent
(4DVar background covariances are static at the begining of the data assimilation
window), they are not full rank3 since P (also known as B in variational literarure)

P = X′X′T (5.27)

is estimated usingN ensemble memebers and can at most haveN−1 degrees of
freedom. Thus without localization the background error covariances in 4DEnVar
are restricted to the low-dimensional subspace spanned by the ensemble mem-
bers; localization in 4DEnVar can be performed using the Schur operator [Lorenc,
2003, Buehner, 2005] thus reducing the sampling error in the covariances and in-
creasing the rank of the covariances. A special issue is that localisation has to be
done in space and time. The latter is usually ignored, but within regions of strong
advection the localisation matrix should be advected with the flow too. This is an
area of active research.

3Note that in the alpha control variable methods the covariance matrices are both flow de-
pendent and full rank as in these methods ensemble perturbations are combined with the static
background error covariances used in the variational assimilation.
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Appendix A

Resampling methods

In this section we give descriptions of a number of resampling techniques which
can be applied to the particle filter and Gaussian mixture filter methods to re-
distribute the filter thus improving the filter spread. The resampling techniques
included here are probabilistic resampling, stochastic universal resampling and
residual resampling; however, they are by no means exclusive and other tech-
niques could be used.

A.1 Probabilistic resampling

The probabilistic resampling or the basic random resampling is the most straight-
forward to implement as we sample directly from the density given by the weights.

Given the weights {wj}Nj=1 associated with the ensemble of particles, where
the sum of weights is equal to one, the total number of particlesN and the number
of particles to be generated M , we generate an index of the sampled particles
using the Algorithm 1.

Algorithm 1 Algorithm of probabilistic resampling

function PR(w,N,M )
ŵ1 ← w1

for j ← 2 to N do . compute cumulative weights
ŵj =

∑j
i=1wj

end for
c← 1
for j ← 1 to M do

u ∼ U [0,M ] . generate a random number
while u > ŵc do

c← c+ 1
end while
Ij ← c . assign an index of the sampled particle
c← 1

end for
return I

end function
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The required input for the PR is: w ∈ RN a vector of particle weights, N the
total number of particles in the filter, andM the number of particles to be sampled
and the method returns an index I ∈ RM which can then be used to select the
sampled particles x∗j = xI(j) for j = 1 : M .

Note that this scheme introduces sampling noise by drawing M times from a
uniform distribution.

A.2 Stochastic universal resampling (SUR)

Stochastic universal resampling also known as systematic resampling performs
resampling in the same way as the basic random resampling algorithm except
instead of drawing each uj independently from U(0, 1) for j = 1, ..., N , it uses a
uniform random number u according to u ∼ U [0, 1/N ] and uj = u + (j − 1)/N
[Bolić et al., 2003].

Given the weights {wj}Nj=1 associated with the ensemble of particles, where
the sum of weights is equal to one, the total number of particlesN and the number
of particles to be generated M , we generate an index of the sampled particles
using the Algorithm 2.

Algorithm 2 Algorithm of stochastic universal resampling

function SUR(w,N,M )
ŵ1 ← w1

for j ← 2 to N do . compute cumulative weights
ŵj =

∑j
i=1wj

end for
u ∼ U [0, 1/M ] . generate a random number
c← 1
for j ← 1 to M do

while u > ŵc do
c← c+ 1

end while
Ij ← c . assign an index of the sampled particle
u← u+ 1/M
c← 1

end for
return I

end function

The required input for the SUR is: w ∈ RN a vector of particle weights, N the
total number of particles in the filter, andM the number of particles to be sampled
and the method returns an index I ∈ RM which can then be used to select the
sampled particles x∗j = xI(j) for j = 1 : M .

Note, that this method has a lower sampling noise than probabilistic resam-
pling since only one random variable is drawn.
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A.3 Residual resampling (RR)

The RR algorithm samples the particles in two parts; in the first part the number
of replications of particles is calculated, but since the method does not guarantee
that the number of resampled particles is M , the residual Nr is computed. The
second step requires resampling which produces Nr of the final M particles. In
Algorithm 3 this is done by SUR, but other resampling technique can be used.
The required input for the RR is: w ∈ RN a vector of particle weights, N the total

Algorithm 3 Algorithm of residual resampling

function RR(w,N,M )
for j ← 1 to N do

ŵj ← bwj ·Mc . the integer part or w ·M
end for
Nr ←M
c← 1 . counter
for j ← 1 to M do

if ŵj > 0 then
Ic to c+ŵj

← j . select the copies of the index to sample ‘
c← c+ ŵj

end if
end for

if Nr > 0 then
for j ← 1 to N do

w̃j ← (wj − ŵj)/Nr . compute residual weights and normalize
end for
IR← PR(ŵ,N,Nr) . sample the additional indices
Ic to M ← IR . store the extra indices at the end of the I array

end if
return I

end function

number of particles in the filter, and M the number of particles to be sampled
and the method returns an index I ∈ RM which can then be used to select the
sampled particles x∗j = xI(j) for j = 1 : M . Note, that we used the PR method
to obtain an array IR ∈ RNr with the indices of the additional sampled particles,
which we then stored in the remaining empty cells of the index array I ∈ RM .

Note, that this method reduces the sampling noise, but not as much as the
SUR method.
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