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Model

I ROMS nested (off-line)
in Mediterranean Ocean
Forecasting System

I 1/60 degree resolution
and 32 vertical levels

I Currents: Western
& Eastern Corsican
Current, Northern Cur-
rent, inertial oscillation,
mesoscale currents

I Two WERA HF radar
systems (Palmaria, San
Rossore) by NATO Un-
dersea Research Centre
(NURC) from 2009 to
2010.



Observations

I Frequency of ν = 12.359 MHz and coupled to a wave length of λb = 12.13 m,

I Radial currents are measured and used for the assimilation

I Angular resolution of 6 degrees, radial resolution of 2.4 km

I Currents are averaged over 1 h

Radial currents on 2010-07-06 21:30 relative to the Palmaria site: left panel shows
WERA measurements and right panel shows ROMS results without assimilation.



Observations

Radial currents on 2010-
07-06 01:30 relative to
the San Rossore site: left
panel shows WERA mea-
surements and right panel
shows ROMS results with-
out assimilation.

WERA: err. std. site pal (20100706 2130)
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dard deviation.



Observation operator

I Radial currents are extracted from model currents u:

uHF =
kb

1− exp(−kbh)

∫ 0

−h
u · er exp(kbz)dz (1)

• kb = 2π
λb

• er is the unit vector pointing in the direction opposite to the location of
the HF radar site

• Positive values: current away from the system

• Essentially represent an weighted average over the upper meters.

I Smoothed in the azimuthal direction by a diffusion operator to filter scales smaller
than 6 degrees



Model errors covariance

I Estimated by ensemble simulation (with 100 members) where uncertain aspect
of the model are perturbed

I Perturbed zonal and meridional wind forcing

I Perturbed boundary conditions (elevation, velocity, temperature and salinity)

I Perturbed momentum equation (ε)

du

dt
+ Ω ∧ u = − 1

ρ0
∇hp+

1

ρ0
∇ · Fu +∇h ∧ ε ez (2)

• where ∇h = ex
∂
∂x

+ ey
∂
∂y

• does not create horizontal convergence or divergence (linked to barotropic
waves)

• can create mesoscale flow structures (absent or misplaced)



Ensemble spin-up
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instantaneous velocity

daily averaged velocity

I Ensemble of IC is created by a 7 day ensemble integration starting from the same
IC but with perturbed forcing (ensemble spin-up)

I Spin-up should create mesoscale circulation features



Velocity spread

Surface velocity ensemble spread after 7 days (m/s)
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I Velocity spread after 7 days

I Largest uncertainties near eddies



Spatial correlation
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I Correlation of temperature at a specific point (magenta circle) and other surface
grid points

I Resulting length-scale is about 50 km



Spatial correlation
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I Correlation of zonal velocity at a specific point (magenta circle) and other surface
grid points

I Resulting length-scale is about 10 km

I Adequately observing surface velocity would require measurements with higher
spatial resolution than the resolution of temperature measurements



Temporal correlation
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Data assimilation scheme

I Time dimension embedded in estimation vector x

I Different definitions of estimation vector are possible:

• x = (model trajectory), i.e. model state at all time instances

• x = (uncertain forcing fields), here IC, BC, wind and stochastic error term
at all time instances

• x = (model trajectory, uncertain forcing fields)

I The optimal x is given by the Kalman analysis (using non-linear observation
operators as in Chen and Snyder (2007)):

xa = xb + A (B + R)−1 (yo − h(xb)) (3)

I where the matrices A and B are covariances estimated from the ensemble.

A = cov(xb, h(xb)) =
〈
(x− 〈x〉) (h(x)− 〈h(x)〉)T

〉
(4)

B = cov(h(xb), h(xb)) =
〈
(h(x)− 〈h(x)〉) (h(x)− 〈h(x)〉)T

〉
(5)

where 〈·〉 is the ensemble average.



Smoother scheme

I For a linear model and an infinite large ensemble, equation (3) minimizes,

J(x) = (x− xb)TPb−1
(x− xb) + (yo − h(x))TR−1(yo − h(x)) (6)

or

J(x) = (x− xb)TPb−1
(x− xb) +

∑
n

(yon − (h(x)n))
TRn

−1(yon − (h(x)n)) (7)

where n refers to the indexed quantifies at time n. This is the cost function from
which 4D-Var and Kalman Smoother can be derived.

I Approach is closely related to Ensemble Smoother (van Leeuwen, 2001), 4D-
EnKF (Hunt et al., 2007) and AEnKF (Sakov et al., 2010) where model tra-
jectories instead of model states are optimized and to the Green’s method with
stochastic “search directions”



Observations
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Twin experiment

Scheme of a twin experiment:

I Model is run with initial conditions (IC), boundary conditions (BC), forcing fields
(e.g. here winds fields) that are assume to be the ”true” solution.

I Pseudo-observations are extracted from this simulation.

I Perturbation are applied to IC, BC and forcing fields.

I Based on those perturbed fields and the extracted pseudo-observation we deter-
mine if the ”true” solution can be recovered.

Variable RMS(xf ,xt) RMS(xa,xt)

Temperature 0.080 0.067
Salinity 0.0063 0.0057
u-wind 0.61 0.40
v-wind 0.60 0.54

I RMS for temperature, salinity and currents is a volume average.

I Assimilation window is 48 hours here.



Estimation of trajectory versus estimation of forcing fields
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Optimizing trajectory

Optimizing forcing

I Assimilation of real data now

I Both approaches equivalent for linear system (and additive noise)

I Unrealistic “ensemble extrapolation” when too small observation errors are used
→ model trajectory and forcing fields are inconsistent



Error statistics for Palmaria Site

Without assimilation
(positive values: current
away from the magenta
dot)

With assimilation



Forecasts
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I Impact of data assimilation on velocity forecast

I Comparison with surface currents from Palmaria

I HF radar assimilation improves the strength of the Northern Current and this
improvement persists for some time.



Simulation with atmospheric model (WRF)

I Blue arrows: WRF 10m
wind vectors, red arrows:
in situ wind measurements
from ICOADS (International
Comprehensive Ocean-
Atmosphere Data Set).

I 3 WRF domains at 30, 10,
3.33 km resolution (two-way
nesting).

I 30-km grid model nested
(one-way) into the Global
Forecast System

I 28 vertical layers



Model results with different wind forcings

I Total RMS dif-
ferences (m/s):

Pal. Ros.
COSMO 0.14 0.11

WRF 0.13 0.14

Figure 1: Radial surface current RMS difference



Conclusions

I Embedding the time dimension into the state vector leads to a smoother scheme
(which is very simple to implement)

I Smoother schemes can be used to estimate the optimal model trajectory or
forcing field

I Both approaches are not equivalent for non-linear systems or multiplicative noise

I The challenge is to make consistent analyzes

I Derive “optimal” perturbation first → rerun the model with corrected forcing

I The source code of smoother schemes is available at http://modb.oce.ulg.

ac.be/alex or by email (a.barth@ulg.ac.be).
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